Пример оформления конструктивных и объемно планировочные решения. Конструктивные и объемно-планировочные решения

5.1. Объемно-планировочное и конструктивное решения здания должны способствовать исключению возможности получения травм при нахождении в нем людей в процессе передвижения, работы, пользования передвижными устройствами, технологическим и инженерным оборудованием.

Строительные конструкции должны обладать долговечностью и надежностью с учетом возможных опасных воздействий, а также устойчивостью к прогрессирующему обрушению, подтвержденных соответствующими расчетами.

Основания и несущие конструкции здания в процессе строительства и эксплуатации не должны иметь трещин, повреждений и деформаций, ведущих к снижению эксплуатационных свойств зданий.

Конструкции должны быть рассчитаны на действие нагрузок от собственного веса и конструкций, которые на них опираются, снеговых и ветровых нагрузок, нагрузок от технологического оборудования, транспортного и инженерного оборудования в соответствии с СП 20.13330, с учетом восприятия воздействия от опасных геологических процессов в районе строительства.

Объемно-планировочные решения следует разрабатывать с учетом необходимости снижения динамических воздействий на строительные конструкции, технологические процессы и работающих, вызываемых виброактивным оборудованием или внешними источниками колебаний.

В зданиях большой протяженности должны предусматриваться температурно-усадочные, осадочные или антисейсмические швы в зависимости от их объемно-планировочных решений и природно-климатических условий района строительства.

5.2. В целях снижения эксплуатационных энергозатрат целесообразно принимать объемно-планировочные решения здания с минимальным значением показателя компактности, равного отношению площади поверхности наружной оболочки здания к заключенному в ней объему.

5.3. Энергетическое и санитарно-техническое оборудование, когда это допустимо по условиям эксплуатации, следует размещать на открытых площадках, предусматривая при необходимости местные укрытия.

5.4. В помещениях высота от пола до низа выступающих конструкций перекрытия (покрытия) должна быть не менее 2,2 м, высота от пола до низа выступающих частей коммуникаций и оборудования в местах регулярного прохода людей и на путях эвакуации - не менее 2 м, а в местах нерегулярного прохода людей - не менее 1,8 м. При необходимости въезда в здание автомобилей высота проезда должна быть не менее 4,2 м до низа конструкций, выступающих частей коммуникаций и оборудования, для пожарных автомобилей - не менее 4,5 м.

Геометрические параметры мобильных (инвентарных) зданий должны соответствовать требованиям ГОСТ 22853.

5.5. В зданиях и помещениях, требующих по условиям технологии поддержания в них стабильных параметров воздушной среды и размещения инженерного оборудования и коммуникаций, допускается предусматривать: подвесные (подшивные) потолки и фальшполы - когда для доступа к коммуникациям не требуется предусматривать проход для обслуживающего персонала. Для обслуживания указанных коммуникаций допускается проектировать люки и вертикальные стальные лестницы; технические этажи - когда по условиям технологии для обслуживания инженерного оборудования, коммуникаций и вспомогательных технологических устройств, размещаемых в этих этажах, требуется устройство проходов, высота которых принимается в соответствии с 5.4.

5.6. Ввод железнодорожных путей в здания допускается предусматривать в соответствии с технологической частью проекта и с учетом требований 5.43. Верх головок рельсов железнодорожных путей должен быть на отметке чистого пола.

5.7. В многоэтажных зданиях высотой более 15 м от планировочной отметки земли до отметки чистого пола верхнего этажа (не считая технического) и наличии на отметке более 15 м постоянных рабочих мест или оборудования, которое необходимо обслуживать более трех раз в смену, следует предусматривать пассажирские лифты по ГОСТ Р 53770. Грузовые лифты должны предусматриваться в соответствии с технологической частью проекта по ГОСТ Р 53771. Число и грузоподъемность лифтов следует принимать в зависимости от пассажиро-и грузопотоков. При численности работающих (в наиболее многочисленную смену) не более 30 на всех этажах, расположенных выше 15 м, в здании следует предусматривать один лифт. При наличии на втором этаже и выше помещений, предназначенных для труда инвалидов, пользующихся креслами-колясками, в здании следует предусматривать пассажирский лифт, если невозможно организовать рабочие места инвалидов на первом этаже. Кабина лифта должна иметь размеры не менее: ширина - 1,1 м, глубина - 2,1 м, ширина дверного проема - 0,85 м.

5.8. Выходы из подвалов следует предусматривать вне зоны работы подъемно-транспортного оборудования.

5.9. Ширину тамбуров и тамбур-шлюзов следует принимать более ширины проемов не менее чем на 0,5 м (по 0,25 м с каждой стороны проема), а глубину - более ширины дверного или воротного полотна на 0,2 м и более, но не менее 1,2 м. При наличии работающих инвалидов, пользующихся креслами-колясками, глубину тамбуров и тамбур-шлюзов следует принимать не менее 1,8 м.

5.10. В помещениях категорий А и Б следует предусматривать наружные легкосбрасываемые ограждающие конструкции. В качестве легкосбрасываемых конструкций следует, как правило, использовать одинарное остекление окон и фонарей. При недостаточной площади остекления допускается в качестве легкосбрасываемых конструкций использовать конструкции покрытий с кровлей из стальных, алюминиевых, асбестоцементных и битумных волнистых листов, из гибкой черепицы, металлочерепицы, асбестоцементных и сланцевых плиток и эффективного негорючего утеплителя. Площадь легкосбрасываемых конструкций следует определять расчетом. При отсутствии расчетных данных площадь легкосбрасываемых конструкций должна составлять не менее 0,05 м2 на 1 м3 объема помещения категории А и не менее 0,03 м2 - помещения категории Б.

Примечания
1. Оконное стекло относится к легкосбрасываемым конструкциям при толщине 3, 4 и 5 мм и площади не менее (соответственно) 0,8, 1 и 1,5 м2. Армированное стекло, стеклопакеты, триплекс, сталинит и поликарбонат к легкосбрасываемым конструкциям не относятся.
2. Рулонный ковер на участках легкосбрасываемых конструкций покрытия следует разрезать на карты площадью не более 180 м2 каждая.
3. Расчетная нагрузка от массы легкосбрасываемых конструкций покрытия должна составлять не более 0,7 кПа.

5.11. Галереи, площадки и лестницы для обслуживания грузоподъемных кранов следует проектировать в соответствии с правилами устройства и безопасной эксплуатации грузоподъемных кранов .

5.12. Для ремонта и очистки остекления окон и фонарей, в случаях, когда применение передвижных или переносных напольных инвентарных приспособлений (приставных лестниц, катучих площадок, телескопических подъемников) невозможно по условиям размещения технологического оборудования или общей высоты здания, необходимо предусматривать стационарные устройства, обеспечивающие безопасное выполнение указанных работ.

5.13. Необходимость устройства фонарей и их тип (зенитные, П-образные, световые, светоаэрационные и пр.) устанавливаются проектом в зависимости от особенностей технологического процесса, санитарно-гигиенических и экологических требований с учетом климатических условий района строительства.

5.14. Фонари должны быть незадуваемыми. Длина фонарей должна составлять не более 120 м. Расстояние между торцами фонарей и между торцом фонаря и наружной стеной должно быть не менее 6 м. Открывание створок фонарей должно быть механизированным (с включением механизмов открывания у выходов из помещений), дублированным ручным управлением.

5.15. Под остеклением зенитных фонарей, выполняемым из листового силикатного стекла и стеклопакетов, а также вдоль внутренней стороны остекления прямоугольных светоаэрационных фонарей следует предусматривать устройство защитной металлической сетки.

5.16. В зданиях с внутренними водостоками в качестве ограждения на кровле допускается использовать парапет. При высоте парапета менее 0,6 м его следует дополнять решетчатым ограждением до высоты 0,6 м от поверхности кровли.

5.17. При дистанционном и автоматическом открывании ворот должна быть обеспечена также возможность открывания их во всех случаях вручную. Размеры ворот в свету для наземного транспорта следует принимать с превышением габаритов транспортных средств (в загруженном состоянии) не менее чем на 0,2 м по высоте и 0,6 м по ширине.

5.18. Уклон маршей в лестничных клетках следует принимать не менее 1:2 при ширине проступи 0,3 м; для подвальных этажей и чердаков допускается принимать уклон маршей лестниц 1:1,5 при ширине проступи 0,26 м.

5.19. Внутренние открытые лестницы (при отсутствии стен лестничных клеток) должны иметь уклон не более 1:1. Уклон открытых лестниц для прохода к одиночным рабочим местам допускается увеличивать до 2:1. Для осмотра оборудования при высоте подъема не более 10 м допускается проектировать вертикальные лестницы шириной 0,6 м.

5.20. При наличии работающих инвалидов с нарушениями опорно-двигательного аппарата уклон лестниц на путях эвакуации должен быть не более 1:2.

5.21. Для зданий высотой от планировочной отметки земли до карниза или верха парапета 10 м и более следует проектировать один выход на кровлю (на каждые полные и неполные 40000 м2 кровли), в том числе зданий: одноэтажных - по наружной открытой стальной лестнице; многоэтажных - из лестничной клетки.

В случаях, когда нецелесообразно иметь в пределах высоты верхнего этажа лестничную клетку для выхода на кровлю, допускается для зданий высотой от планировочной отметки земли до отметки чистого пола верхнего этажа не более 30 м проектировать наружную открытую стальную лестницу для выхода на кровлю из лестничной клетки через площадку этой лестницы.

5.22. Размещение помещений различных категорий в зданиях и их отделение друг от друга, требования к эвакуационным путям и выходам, устройству дымоудаления, шлюзов, тамбур-шлюзов, лестничных клеток и лестниц, выходов на кровлю следует принимать в соответствии с требованиями Федерального закона от 22 июля 2008 г. N 123-ФЗ "Технический регламент о требованиях пожарной безопасности" и СП 1.13130, СП 2.13130, СП 4.13130, СП 6.13130.

Допускается встраивать этаж складского или административного назначения в производственное здание, а также этаж производственного или административного назначения в складское здание при соблюдении в здании требований СП 44.13330 и настоящего СП.

В одноэтажных зданиях терминалов I и II степеней огнестойкости класса конструктивной пожарной опасности С0 допускается при необходимости устройство эвакуационных коридоров, выгороженных противопожарными преградами 1-го типа и обеспеченных подпором воздуха при пожаре. В этом случае длина коридора не учитывается при расчете протяженности пути эвакуации.

5.23. Расстояние от наиболее удаленного рабочего места в помещении до ближайшего эвакуационного выхода из помещения непосредственно наружу или в лестничную клетку не должно превышать значений, приведенных в таблице 29 СП 1.13130.

5.24. Расстояние по коридору от двери наиболее удаленного помещения площадью не более 1000 м2 до ближайшего выхода наружу или в лестничную клетку не должно превышать значений, приведенных в таблице 30 СП 1.13130.

5.25. Ширину эвакуационного выхода (двери) из помещений следует принимать в зависимости от общей численности людей, эвакуирующихся через этот выход, и численности людей на 1 м ширину выхода (двери), установленного в таблице 31 СП 1.13130, но не менее 0,9 м при наличии работающих инвалидов с нарушениями опорно-двигательного аппарата.

Численность людей на 1 м ширины эвакуационного выхода при промежуточных значениях объема помещений определяется интерполяцией.

Численность людей на 1 м ширины эвакуационного выхода (двери) из помещений высотой более 6 м увеличивается: при высоте помещений 12 м - на 20%, 18 м - на 30%, 24 м - на 40%; при промежуточных значениях высоты помещений увеличение численности людей на 1 м ширины выхода определяется интерполяцией.

5.26. Ширину эвакуационного выхода (двери) из коридора наружу или в лестничную клетку следует принимать в зависимости от общей численности людей, эвакуирующихся через этот выход, и численности людей на 1 м ширины выхода (двери), установленного в таблице 32 СП 1.13130, но не менее 0,8 м, при наличии работающих инвалидов с нарушениями опорно-двигательного аппарата - не менее 0,9 м.

5.27. При наличии работающих инвалидов с нарушениями опорно-двигательного аппарата ширину марша лестницы следует принимать не менее 1,2 м.

5.28. В помещениях и коридорах следует предусматривать дымоудаление на случай пожара в соответствии с требованиями СП 7.13130.

5.29. Степень огнестойкости, класс конструктивной пожарной опасности, высоту зданий и площадь этажа здания в пределах пожарного отсека следует принимать для производственных зданий по таблице 6.1 СП 2.13130, для складских зданий - по таблице 6.3 СП 2.13130.

При размещении складов в производственных зданиях площадь этажа складских помещений в пределах пожарного отсека и их высота (число этажей) не должны превышать значений, указанных в таблице 6.3 СП 2.13130.

При наличии площадок, этажерок и антресолей, площадь которых на любой отметке превышает 40% площади пола помещения, площадь этажа определяется как для многоэтажного здания с числом этажей, определяемым по 4.11.

5.30. При размещении в одном здании или помещении технологических процессов с различной взрывопожарной и пожарной опасностью следует предусматривать мероприятия по предупреждению взрыва и распространения пожара. Эффективность этих мероприятий должна быть обоснована в технологической части проекта. Если указанные мероприятия являются недостаточно эффективными, то технологические процессы с различной взрывопожарной и пожарной опасностью следует размещать в отдельных помещениях и отделять в соответствии с требованиями СП 4.13130.

5.31. Подвалы при размещении в них помещений категорий В1 - В3 должны разделяться в соответствии с требованиями СП 4.13130.

5.32. В горячих цехах с избыточным тепловыделением ограждающие конструкции следует проектировать, как правило, неутепленными.

5.33. На кровлях с уклоном до 12% включительно в зданиях с высотой до карниза или верха парапета более 10 м, а также на кровлях с уклоном более 12% в зданиях высотой до низа карниза более 7 м следует предусматривать ограждения в соответствии с ГОСТ 25772. Независимо от высоты здания ограждения, соответствующие требованиям этого стандарта, следует предусматривать на эксплуатируемых кровлях.

В горячих цехах со значительным выделением теплоты и других производственных вредностей следует предусматривать крутоуклонные кровли.

5.34. Кровли отапливаемых зданий следует выполнять с внутренним водостоком. Допускается устройство кровель с наружным организованным водостоком в отапливаемых и неотапливаемых зданиях при условии выполнения мероприятий, препятствующих образованию сосулек и наледей.

5.35. В одноэтажных складских зданиях с высотным стеллажным хранением допускается при обосновании использовать конструкции стеллажей в качестве опор покрытия и крепления наружных стен.

5.36. В складских помещениях для хранения пищевых продуктов необходимо предусматривать: ограждающие конструкции без выступающих ребер и из материалов, не разрушаемых грызунами; сплошные и без пустот полотна наружных дверей, ворот и крышек люков; устройства для закрывания отверстий каналов систем вентиляции; ограждения стальной сеткой (с ячейками размерами не более 12 x 12 мм) вентиляционных отверстий в стенах и воздуховодах, расположенных в пределах высоты 1,2 м над уровнем пола, и окон подвальных этажей (конструкции ограждения стальной сеткой окон должны быть открывающимися или съемными).

В проектах таких складских зданий необходимо предусматривать указания о тщательной заделке отверстий для пропуска трубопроводов (в стенах, перегородках и перекрытиях) и сопряжений ограждающих конструкций помещений (внутренних и наружных стен, перегородок между собой и с полами или перекрытиями).

Складские помещения, предназначенные для хранения пищевых продуктов, могут быть оборудованы дератизационными системами.

5.37. Колонны и конструкции обрамления проемов в складских зданиях в местах интенсивного движения напольного транспорта должны быть защищены от механических повреждений и окрашены в соответствии с требованиями ГОСТ Р 12.4.026.

Для ограничения повреждений колонн при перемещении грузов следует применять, как правило, колонны трубчатого сечения.

5.38. Погрузочно-разгрузочные рампы и платформы следует проектировать с учетом требований защиты грузов и погрузочно-разгрузочных механизмов от атмосферных осадков.

Навес над железнодорожными погрузочно-разгрузочными рампами и платформами должен не менее чем на 0,5 м перекрывать ось железнодорожного пути, а над автомобильными рампами должен перекрывать автомобильный проезд не менее чем на 1,5 м от края рампы.

5.39. Длину погрузочно-разгрузочной рампы следует определять в зависимости от грузооборота и вместимости склада, а также исходя из объемно-планировочного решения здания.

Ширину погрузочно-разгрузочных рамп и платформ необходимо принимать в соответствии с требованиями технологии и техники безопасности погрузочно-разгрузочных работ.

5.40. Конструкции рамп и навесов, примыкающих к зданиям I, II, III и IV степеней огнестойкости классов пожарной опасности С0 и С1, следует принимать из негорючих материалов.

5.41. Погрузочно-разгрузочные рампы и платформы должны иметь не менее двух рассредоточенных лестниц или пандусов.

5.42. Отметка края погрузочно-разгрузочной рампы для автомобильного транспорта со стороны подъезда автомобилей должна быть равной 1,2 м от уровня поверхности проезжей части дороги или погрузочно-разгрузочной площадки.

5.43. Погрузочно-разгрузочные рампы и платформы для железнодорожного подвижного состава следует проектировать с учетом требований ГОСТ 9238.

5.44. Ширина пандусов для проезда напольных транспортных средств должна не менее чем на 0,6 м превышать максимальную ширину груженого транспортного средства. Уклон пандусов следует принимать не более 16% при размещении их в закрытых помещениях и не более 10% при размещении снаружи зданий.

5.45. В складских помещениях температуру, относительную влажность и скорость движения воздуха необходимо принимать в соответствии с требованиями технологии хранения грузов и требованиями СП 60.13330.

В проемах ворот в наружных стенах следует монтировать докшелтеры, изолируя внутреннее пространство склада от воздействий внешней среды.

5.46. Конструкции и материалы оснований и покрытий полов складских зданий и помещений следует назначать с учетом восприятия нагрузок от складируемых грузов, вида и интенсивности механических воздействий напольного транспорта и пылеотделения, накопления статического электричества и искрообразования с учетом требований СП 29.13330.

Для покрытий полов складских помещений, предназначенных для хранения пищевых продуктов, не допускается применение дегтей и дегтевых мастик и других экологически вредных материалов.

При складировании грузов, температура которых превышает 60 °C, следует предусматривать жаропрочные полы.

5.47. Многоэтажные складские здания категорий Б и В следует проектировать шириной не более 60 м.

5.48. Складские помещения производственных зданий следует отделять от других помещений в соответствии с требованиями СП 4.13130.

5.49. Складские здания с высотным стеллажным хранением следует проектировать с учетом требований СП 4.13130.

5.50. При разделении по технологическим или санитарным условиям перегородками складских помещений с грузами, одинаковыми по пожарной опасности, требования к перегородкам определяются в технологической части проекта.

По требованиям технологии хранения грузов допускается экспедицию, приемку, сортировку и комплектацию грузов размещать непосредственно в хранилищах, без отделения их перегородками. При этом рабочие места товароведов, экспертов, кладовщиков, отбраковщиков, учетчиков и операторов допускается ограждать перегородками с ненормируемыми пределами огнестойкости и классом пожарной опасности (остекленными или с сеткой при высоте глухой части не более 1,2 м, сборно-разборными и раздвижными).

5.51. В оконных проемах складских зданий следует устраивать открывающиеся оконные фрамуги общей площадью, определяемой по расчету дымоудаления при пожаре.

Допускается в помещениях хранилищ не устраивать оконные проемы при обеспечении дымоудаления в соответствии с требованиями СП 7.13130.

3.1 Описание и обоснование внешнего и внутреннего вида здания, его пространственной, планировочной и функциональной организации

Здание отдельно стоящее, двухэтажное. Имеет прямоугольное очертание в плане. Размеры в крайних осях – 11,88м*10,8м. Высота этажа до низа несущих конструкций 2,5 м. Общая высота здания 8,26 м.

Планировочными решениями жилого дома обеспечиваются функционально.

Планировка площадок и территорий проживая обеспечивает наиболее благоприятные условия для жизни, рациональное и экономное использование земельного участка.

3.2 Обоснование принятых объёмно-пространственных и архитектурно-художественных решений

Проектом предусмотрены конструктивные и объемно-планировочные решения, обеспечивающие пожарную безопасность здания и эвакуацию людей в случае пожара, через главный вход.

Также объёмно-пространственные решения здания обеспечивают требуемое естественное освещение через оконные проемы.

3.3 Описание и обоснование композиционных приемов при оформлении фасадов и интерьеров в здании

Места примыканий оконных и дверных блоков к граням проемов защищаются от водо- и воздухопроницания с помощью герметизирующих мастик и уплотняющих прокладок.

4 Конструктивные и объемно-планировочные решения

4.1 Описание и обоснование конструктивных решений

Конструктивная система жилого здания – бескаркасная (стеновая).

За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.

Стены жилого здания:

    Наружные стены из облицовочного кирпича. Согласно теплотехническому расчету выполнить утепление минераловатными плитами по ГОСТ 9572-2012 120мм.

    внутренние – из обыкновенного глиняного кирпича по ГОСТ 530-2012 КР-кл-по 250×120×65/1 НФ/500/2,0/100 - 380мм.

    перегородки: кирпич толщиной 100мм.

    Окна - деревянные с двойным остеклением для жилых и общественных зданий.ГОСТ 11214-78

4.2 Описание и обоснование технических решений, обеспечивающих необходимую прочность, устойчивость, пространственную неизменяемость здания

Конструктивная схема здания – с опиранием перекрытий на продольные и поперечные стены. Пространственная жесткость здания обеспечивается опиранием плит перекрытий на несущие стены, закреплёнными с ними и между собой металлическими элементами.

4.3 Описание конструктивных и технических решений подземной части объекта капитального строительства

Фундаменты под стенами выполнены из бетона класса В20, подушка фундамента выполнена из бетона класса В20.

4.4 Описание и обоснование принятых объемно-планировочных решений здания

Характеристика здания

Степень огнестойкости – II по СП 2.13130.2012;

Класс по функциональной пожарной опасности – Ф1.4 по N 123-ФЗ;

Класс конструктивной пожарной опасности - СО по СП 2.13130.2012;

Этажность – 2 этаж.

На первом этаже находится веранда, которая затем переходит в холл, из холла можно попасть в С/У, кладовую, котельную, жилую комнату, прихожую, кухню-столовую и гостиную. В холле есть лестница на второй этаж.

На втором этаже расположены спальня, детская, кладовая, гардероб, жилая комната.

4.5 Обоснование номенклатуры, компоновки и площадей основного назначения

Принятые объемно-пространственные и архитектурные решения приняты с учетом функциональных процессов и создания наиболее комфортных условий для проживания. Эти решения также обеспечивают пожарную безопасность здания, эвакуацию людей в случае пожара и выполнение санитарных требований по охране здоровья людей и окружающей среды. Архитектурная выразительность здания, достигается единой формообразующей концепцией и применением серийных высококачественных строительных и отделочных материалов.

4.6 Характеристика и обоснование конструкций полов, кровли, перегородок и отделки помещений

Перегородки в здании толщиной 100 мм.

Проектом предусмотрена отделка полов: холл, гостиная, спальня, кладовая, кухня, с/у, прихожая, спальни.

Внутренняя отделка стен:

Холл и кухня-столовая: обшивка ГКЛ, оклейка флизилиновыми обоями;

Гостиная: обшивка ГКЛ, облицовка искусственным камнем;

С/У: шпаклёвка плиточный клей, облицовка керамической плиткой;

Спальни: обшивка ГКЛ, оклейка флизилиновыми обоями;

Отделка потолков:

Холл, кухня-столовая, гостиная, спальня, кабинет, игровая: обшивка ГКЛ, натяжные потолки (белый);

С/У: шпаклёвка, плиточный клей, облицовка керамической плиткой;

4.7 Перечень мероприятий по защите строительных конструкций и фундаментов от разрушения

В проекте предусмотрены мероприятия по защите строительных конструкций от коррозии в соответствии с требованиями СП 28.13330.2012 «Защита строительных конструкций от коррозии», а также выполнена вертикальная гидроизоляция фундаментов и фундаментных балок. Для защиты оснований от замачивания вокруг стен по периметру здания выполнена отмостка из асфальтового покрытия.

ОСОБЕННОСТИ МОДУЛЬНОЙ КООРДИНАЦИИ, УНИФИКАЦИИ И ТИПИЗАЦИИ В

ПРОМЫШЛЕННОМ СТРОИТЕЛЬСТВЕ

Унификация объемно-планировочных и конструктивных решений промышленных зданий имеет две формы - отраслевую и межотрасле­ вую. Если в прошлом унификация объемно-планировочных и конструк­тивных решений промышленных зда­ний проводилась в рамках данной отрасли промышленности, то в насто­ящее время создаются унифицирован­ные промышленные здания для разных отраслей. Для удобства унификации объем промышленного здания расчленяют на отдельные части или элементы.

Объемно-планировочным элемен­ том или пространственной ячейкой на­зывают часть здания, с размерами равными высоте этажа, пролету и шагу.

Планировочным элементом или ячейкой называют горизонтальную проекцию объемно-планировочного элемента. Объемно-планировочные и планировочные элементы в зависи­мости от расположения их в здании могут быть угловые, торцевые, боко­вые, средние элементы у температурного шва.

Температурным блоком называют часть здания, состоящую из несколь­ких объемно-планировочных элемен­тов, расположенных между продоль­ными и поперечными температурными швами или между температурными швами и торцевой или продольной стеной здания.

С момента своего возникновения унификация прошла несколько стадий: линейную, пространственную и объем­ ную.

В целях упрощения конструктив­ного решения одноэтажные промыш­ленные здания проектируют в основ­ном с пролетами одного направления, одинаковой ширины и высоты. При­менение в одном здании различных по величине и высоте пролетов воз­можно только в том случае, если это обусловливается технологическим процессом и необходимостью удовлет­ворить требования, связанные, напри­мер, с блокированием цехов. В тех же случаях для отдельных производств может быть допущено взаимно перпен­дикулярное расположение пролетов.

Перепады высот в многопролетных зданиях менее 1,2 м обычно не устра­ивают, поскольку они значительно усложняют и удорожают решение зда­ния. Перепады более 1,2 м, необходи­мые по технологическим условиям, обычно совмещают с температурными швами.

Шаг колонн по крайним и средним рядам принимают на основании техни­ко-экономических соображений с уче­том технологических требований. Обычно он составляет 6 или 12 м. Возможен и больший шаг, но кратный укрупненному модулю б м, если допус­кает высота здания и величина расчет­ных нагрузок.

В зданиях, оборудованных мосто­выми кранами, создающими значи­тельные нагрузки, высоту помещения и отметку верха крановой консоли колонн увязывают не только с проле­том, но и с грузоподъемностью крана и шагом колонн каркаса.

В многоэтажных промышленных зданиях сетку колонн каркаса назна­чают в зависимости от норматив­ной полезной нагрузки на 1 м 2 пере­крытия. Размеры пролетов назначают кратными 3 м, шаг колонн кратным 6 м. Так, при нагрузке до 10000 Н/м 2 {1000 кг/м 2) применяют сетку колонн 9x6 м, а при нагрузках 20000 и25000 Н/м 2 {2000 и 2500 кг/м 2) - 6x6 м. Применение других сеток ко­лонн возможно лишь при соответст­вующем технико-экономическом обо­сновании. Высоты этажей многоэтаж­ных зданий устанавливают кратными укрупненному модулю 0,6 м, но не ме­нее 3 м.

Унификация промышленных зда­ний предусматривает определенную систему привязки конструктивных эле­ментов к модульным разбивочным осям. Она позволяет получить иден­тичное решение конструктивных уз­лов и возможность взаимозаменяе­мости конструкций.

Для одноэтажных промышленных зданий установлены привязки колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устройства температурных швов и в местах перепада высот меж­ду пролетами одного или взаимно перпендикулярных направлений. Как видно, выбор «нулевой привязки» (т. е. совпадение наружной грани колонн с разбивочной осью) или привязки на расстоянии 250 или 500 мм от наружной грани колонн крайних рядов зависит от гру­зоподъемности мостовых кранов, шага колонн и высоты здания. Такая привязка позволяет сокра­тить типоразмеры конструктивных элементов, учитывать действующие нагрузки, устанавливать подстропиль­ные конструкции и устраивать прохо­ды по подкрановым путям.

Геометрические оси торцевых ко­лонн основного каркаса смещают с по­перечных разбивочных осей внутрь здания на 500 мм, внутренние поверх­ности торцевых стен должны совпа­дать с поперечными разбивочными осями, т. е. иметь нулевую привязку. При этом отпадает необходимость в доборных элементах.

Привязка конструктивных элементов одноэтажных

каркасных промышленных зданий к разбивочным

осям колонн в местах перепада высот



Привязка несущих наружных стен

Многоэтажные промышленные здания проектируют, как правило, с полным сборным железобетонным каркасом и самонесущими или навес­ными стенами и, в отдельных случаях, с неполным каркасом и несущими сте­нами. Основные элементы каркаса - колонны, ригели, плиты перекрытий и связи.


Привязка конструктивных элементов многоэтаж­ ных каркасных промышленных зданий к разбивочным осям

а - варианты расположения разбивочных осей; б, в - при­меры привязки колонн и самонесущих или навесных стен; е-примеры привязки колонн и стен в местах устройства деформационных швов

В многоэтажных каркасных про­мышленных зданиях разбивочные оси колонн средних рядов совмещают с геометрическими. Иск­лючением могут быть колонны, распо­лагаемые в местах деформационных швов, перепада высот зданий и в тех случаях, когда конструкции опор раз­личны.

Колонны крайних рядов зданий ли­бо имеют «нулевую привязку» , либо внутреннюю грань колонн размещают на расстоянии а от модульной разбивочной оси. Величину а принимают рав­ной половине толщины внутренней ко­лонны. Привязка самонесущих или на­весных стен к разбивочной оси ведется с учетом привязки колонн крайних ря­дов и особенностей примыкания стен к колоннам или перекрытиям. В местах устройства деформационных швов привязку колонн и стен осуществ­ляют согласно. В слу­чае перепада высот при установке одинарных колонн используют двой­ные разбивочные оси.

КОНСТРУКЦИИ ПРОМЫШЛЕННЫХ ЗДАНИЙ

ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ

ПРОМЫШ­ ЛЕННЫХ ЗДАНИЙ

На первом этапе проектирования определяют функцио­нальное назначение и место конст­руктивного элемента в здании.

На втором этапе решения поставленной задачи возникает необходимость всю совокупность воздействий, которым подвергается проектируемый элемент в процессе изготовления, доставки на постройку, монтажа и последую­щей эксплуатации, схематизировать и представить в виде системы про­стейших воздействий. Такая схема­тизация может быть справедливой в том случае, если последствия схе­матизированных воздействий будут аналогичны последствиям, возникаю­щим в действительных условиях.

По природе возникновения могут быть выделены следующие внешние воздействия:

воздействия, определяемые местом рассматриваемого элемента в общей конструктивной схеме здания;

воздействия, вытекающие из при­родно-климатических условий и др. осо­бенностей района строительства;

воздействия, вызываемые условия­ми эксплуатации помещений и работой расположенного в них технологиче­ского оборудования;

воздействия, возникающие в про­цессе производства строительных ра­бот, изготовления и монтажа деталей.

Различные воздействия могут быть разовыми или повторяющимися в те­чение всего периода эксплуатации зда­ния, могут накладываться одно на другое или действовать независимо, быть главными, определяющими и ма­лозначительными. Выявление всех воздействий, играющих основную роль в решении рассматриваемого конст­руктивного элемента,- главная зада­ча этого этапа.

Основная задача третьего этапа кон­струирования - выявить все последствия, обусловлен­ные основными видами воздействий, с учетом вероятности их возникнове­ния, повторяемости и совпадения. Все воздействия, как силовые, так и несиловые (температура, влаж­ность, солнечная радиация и др.), способны вызвать в рассматриваемом элементе различные деформации, пе­ремещения, изменения физико-меха­нических свойств материалов, из которых состоит элемент. Последствия перечисленных воздействий могут но­сить обратимый характер, когда после прекращения их влияния на элемент или материалы последние восстанав­ливают свои первоначальные каче­ства, и необратимые, навсегда видо­изменяющие первоначальное положе­ние элемента, его размеры, свойства, структуру.

На четвертом этапе устанавливают требования, которым должен удов­летворять конструируемый элемент. Эти требования вытекают из функ­ционального его назначения и осно­вываются на опыте строительства и эксплуатации подобных конструкций и рекомендаций, полученных по итогам научных исследований в этой обла­сти. Указанные требования устанав­ливают допустимые пределы возмож­ных последствий, нормируют сроки службы и эксплуатационные качества элемента, его эстетические качества, степень индустриальности.

Требования, предъявляемые к эле­менту, предопределяют его прочность и устойчивость, изолирующую способ­ность, долговечность, огнестойкость, гигиеничность, художественную вы­разительность, строительную техно­логичность, технико-экономическую целесообразность. Устанавливают их исходя из значимости и капиталь­ности строящегося здания в соответст­вии с действующими нормами проек­тирования, указаниями, инструкциями и другой технической документацией. После того, как четко выявлены и схематизированы все воздействия, которым подвергается проектируемый элемент, определены последствия, ими вызываемые, а также уточнены предъ­являемые к нему требования, предо­ставляется возможным подойти к ос­новному, пятому, этапу решения зада­чи - выбору замысла конструкции на основе сопоставления различных ва­риантов ее решения и с использо­ванием различных строительных ма­териалов.

Принципиальное решение конст­рукций, включая выбор материалов, требующихся для ее осуществления, должно сопровождаться проведением необходимых расчетов для установле­ния размеров как самой конструк­ции, так и составных ее частей. При этих расчетах используют все знания в области строительной физики, сопро­тивления материалов и др.

После определения всех размеров и графического отображения конст­руируемого элемента важно дать ему всестороннюю технико-экономическую оценку и сравнить с другими имею­щимися решениями.

КАРКАСЫ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Каркас одноэтажного промышлен­ного здания обычно состоит из попе­речных рам, образованных колоннами и несущими конструкциями покрытия (балки, фермы, арки и др.) и про­дольных элементов: фундаментных, подкрановых, обвязочных балок, под­стропильных конструкций, плит пок­рытия и связей. Когда несущие кон­струкции покрытий выполняют в виде пространственных систем - сводов, куполов, оболочек, складок и др., они одновременно являются продольными и поперечными элементами каркаса.

Материалом для устройства кар­каса служат преимущественно желе­зобетон и реже сталь. При выборе материала каркаса руководствуются характером силовых и несиловых воз­действий, воспринимаемых каркасом, а также учитывают размеры пролетов, шага колонн, высоту здания, место строительства, требования огнестой­кости и технико-экономические сооб­ражения.

В одноэтажных производственных зданиях допускается применять сталь­ные несущие конструкции:

а) для стропильных и подстро­пильных конструкций: в отапливаемых зданиях с пролетами 30 м. и более; в неотапливаемых зданиях и навесах различного назначения с асбестоцементной кровлей с пролетами до 12 м включительно при грузоподъемности подвесного подъемно-транспортного оборудования более 2 т, с пролетом 18 м; при грузоподъемности подвес­ного подъемно-транспортного обору­дования более 3,2 т; в зданиях и навесах пролетом 24 м и более; в неотапливаемых однопролетных зда­ниях с рулонной кровлей с проле­тами 30 м и более, а в многопролет­ных зданиях - с пролетами 18 м и более; в зданиях с подвесным подъемно-транспортным оборудова­нием грузоподъемностью более 5 т либо другими подвесными устройст­вами, создающими нагрузки, превышающие предусмотренные для типо­вых железобетонных конструкций; в зданиях на участках с развитой сетью подвесного конвейерного тран­спорта; в зданиях с расчетной сей­смичностью 8 баллов с пролетами 24 м и более; в зданиях с расчетной сейсмичностью 9 баллов с пролетами 18 м и более, а также в случаях возведения зданий в труднодоступ­ных районах строительства; в зда­ниях с большими динамическими нагрузками (копровые цехи, взрыв­ные отделения и др.); над горячими участками цехов с интенсивным тепло­излучением при температуре нагрева поверхности конструкций более 100° С (холодильники прокатных цехов, отде­ления нагревательных колодцев, печ­ные и разливочные пролеты и т. п.) и др.;

б) колонны: в зданиях при высоте их от пола до низа стропильных конструкций более 18 м; при наличии мостовых кранов общего назначения

грузоподъемностью 50 т и более неза­висимо от высоты колонн, а также при меньшей грузоподъемности кра­нов тяжелого режима работы; при шаге колонн более 12 м; при двухъ­ярусном расположении мостовых кранов;

в) для подкрановых балок, светоаэрационных фонарей, ригелей и стоек фахверка;

г) для типовых легких несущихи ограждающих конструкций комплек­сной поставки (в этом случае могут применяться стальные и железобетон­ные колонны).

ЖЕЛЕЗОБЕТОННЫЕ КАРКАСЫ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Несущим остовом одноэтажного каркасного промышленного здания служат поперечные рамы и связыва­ющие их продольные элементы.

Поперечная рама каркаса состоит из стоек, жестко заделанных в фун­дамент, и ригелей (ферм или балок), являющихся несущими конструкциями покрытия, опертых на стойки каркаса.

Подольные элементы каркаса обеспечивают устойчивость каркаса в продольном направлении и воспри­нимают кроме нагрузок собственной массы продольные нагрузки от тор­можения кранов и нагрузки от ветра, действующего на торцевые стены зда­ния. К этим элементам относятся: фундаментные, обвязочные и подкра­ новые балки, несущие конструкции ограждающей части покрытия и спе­ циальные связи (между стойками и между несущими конструкциями пок­рытия).

Сборные железобетонные каркасы могут быть решены по рамной, рамно- связевой или связевой системе . При рамной системе каркаса пространственная жесткость здания обеспечивается работой самого карка­са, рамы которого воспринимают как горизонтальные, так и вертикальные нагрузки. При рамно-связевой системе вертикальные нагрузки восприни­маются рамами каркаса, а горизон­тальные - рамами и вертикальными связями (диафрагмами). При связе­вой системе вертикальные нагрузки воспринимаются колоннами каркаса, а горизонательные - вертикальными связями.

Рамно-связевые системы имеют не­которые преимущества по сравнению с рамами, так как упрощаются узловые сопряжения элементов каркаса и их можно унифицировать, достигая неко­торое сокращение расхода стали за счет облегчения закладных деталей в стыках и уменьшения арматуры в ко­лоннах.

В тех случаях, когда поперечные стены или лестничные клетки отсутст­вуют или расстояние между ними очень велико, а также когда перекры­тия ослаблены отверстиями, обеспе­чить удовлетворительную работу сбор­ного железобетонного каркаса рамно-связевой системы не представляется возможным. В таких случаях приме­няют сборный каркас рамной системы. В отдельных случаях каркас может быть решен с балочной конструкцией перекрытия и жестким железобетон­ным монолитным ядром. Ядро на всю высоту здания выполняют в подвиж­ной опалубке. В стенах ядра остав­ляют отверстия для опирания ригелей каркаса, устройства дверей и проклад­ки трубопроводов.

Наружные стены каркасных зда­ний представляют собой лишь ог­раждающие конструкции и поэтому решаются как самонесущие или навес­ные. Конструктивная система покры­ тия может быть беспрогонной или с прогонами. В первом случае по не­сущим конструкциям покрытия укла­дывают крупноразмерные плиты (па­нели). Во втором случае вдоль зда­ния укладывают прогоны, а по ним в поперечном направлении - плиты

Сборные железобетонные ко­ лонны подразделяют на две группы. Колонны, относящиеся к первой груп­пе, предназначены для зданий без мостовых кранов, в бескрановых це­хах и в цехах, оснащенных подвес­ным подъемно-транспортным оборудо­ванием. Колонны, относящиеся ко вто­рой группе, применяют в цехах, оборудованных мостовыми кранами.

По конструктивному решению ко­лонны разделяют на одноветвевые и двухветвевые, по местоположению в здании - на крайние, средние и рас­полагаемые у торцевых стен. При кранах грузоподъемно­стью до 30 т и высоте здания бо­лее 10,8 м применяют двухветвевые колонны, которые по расходу мате­риала экономичнее одноветвевых. Они бывают ступенчатые и ступенчато- консольные ; первые предназначены для крайних рядов, вторые - для средних. Высота типовых двухветвевых ко­лонн 10,8-18 м. Величина заглубления колонн ни­же нулевой отметки зависит от вида и высоты колонн, грузоподъемности кранового оборудования и наличия помещений или приямков, распола­гаемых ниже уровня пола. Величина заглубления колонн в зданиях с под­весным транспортом и без него - 0,9 м; колонн прямоугольного сечения, применяемых в зданиях с мостовыми кранами,- 1 м; двухветвевых колонн высотой 10,8 м - 1,05 м и таких же колонн высотой 12,6-18 м-1,35 м; двухветвевых колонн при кранах гру­зоподъемностью более 50 т - 1,6 м, а при наличии технических подполий, каналов или подвалов - 3,6-5,6 м.

Фундаменты под колонны. Объем бетона, идущего в фундаменты под колонны в промышленном здании, составляет 20-35% общего объема расходуемого бетона, а стоимость их возведения составляет 5-20% полной стоимости здания. Фундаменты устраивают монолит­ными и сборными. Сборные железо­бетонные фундаменты могут быть из одного блока, из блока и плиты или из нескольких блоков и плит. Блоки и плиты укладывают на под­готовку толщиной 100 мм - щебеноч­ную при сухих грунтах и бетонную (марки 50) при влажных грунтах.

На один фундаментный блок мож­но опирать от одной до четырех колонн (в местах устройства темпе­ратурных швов). Площадь подошвы и другие размеры фундамента уста­навливают по расчету в зависимости от передаваемой на него нагрузки и несущей способности основания.

Отметка верхнего обреза фунда­мента независимо от грунтовых усло­вий должна быть на 150 мм ниже отметки чистого пола. Такое решение дает возможность осуществлять монтаж конструкций на­земной части здания после того, как произведена обратная засыпка котло­ванов, устроена подготовка под полы и проложены все коммуникации.

Фундаментные балки. Наружные и внутренние самонесущие стены здания устанавливают на фундаментные бал­ки, посредством которых нагрузку пе­редают на фундаменты колонн карка­са. Фундаментные балки укладывают на специально заготовленные бетон­ные столбики, устанавливаемые на обрезы фундаментов.

Обвязочные балки служат для опирания наружных стен в местах пере­пада высот зданий, а при распо­ложении этих балок над оконными проемами они выполняют роль пере­мычек. Изготовляют обвязочные бал­ки разрезными. Их размеры и форму поперечного сечения принимают в за­висимости от толщины устанавливае­мых на них стен и величины переда­ваемой нагрузки. Обвязочные балки применяют тог­да, когда стены здания делают из кирпича или мелких блоков. Несущие конструкции покрытий промышленных зданий подразделяют на стропильные, подстропильные и не­ сущие элементы ограждающей части покрытия.

В промышленных зданиях обычно применяют следующие типы стро­пильных несущих конструкций: плос­костные - балки, фермы, арки и рамы; пространственные - оболочки, складки, купола, своды и висячие системы.

Подстропильные конструкции вы­полняют в виде балок и ферм, а несу­щие конструкции ограждающей части покрытия - в виде крупноразмерных плит. Соответственно унифицирован­ным размерам объемно-планировочных элементов промышленных зданий величину поперечных пролетов и про дольного шага несущих конструкций назначают кратной укрупненному мо­дулю 6 м, в отдельных случаях допускают применение модуля 3 м.

Железобетонные балки применяют для устройства покрытий в промыш­ленных зданиях при пролетах 6, 9, 12 и 18 м. Необходимость балочных по­крытий при пролетах 6, 9 и 12 м (таких размеров пролеты можно перекрыть и плитами) возникает в случае подвески к несущим конструкциям монорельсов или кранов.

Железобетонные фермы применя­ют обычно для перекрытия пролетов 18, 24 и 30 м, их устанавливают с шагом 6 или 12 м. Фермы пролетом 18 м легче железобетонных балок того же пролета, но более трудоемки в изготовлении.

Цилиндрические оболочки сбор­ные и монолитные применяют при пролетах 24-48 м. Оболочка состоит из тонкой изогнутой по цилиндричес­кой поверхности плиты, усиленной бортовыми элементами. Ее опирают по торцам на диафрагмы, поддерживае­мые колоннами.

Купола применяют для устройства покрытий над промышленными здани­ями или сооружениями, имеющими круглую форму в плане. Они могут быть из сборных железобетонных эле­ментов и монолитными. Первые, как правило, с ребристой структурой, вто­рые - с гладкой. Сборные железобе­тонные купола имеют радиальную или радиально-кольцевую разрезку по­верхности на сборные элементы.

Наряду со сплошными железобе­тонными устраивают сетчатые купола, которые в большинстве случаев соби­рают из решетчатых прямоугольных, треугольных, ромбовидных или шести­угольных панелей.

Своды применяют для устройств покрытий зданий при пролетах до 100 м и более. Для таких больших пролетов тонкостенные своды являют­ся одним из рациональных конструк­тивных решений. Отличительная осо­бенность этой конструкции - наличие распора, который передается на опоры или воспринимается затяжками. Сво­ды могут опираться на вертикальные несущие конструкции (колонны, стены) или непосредственно на фундаменты.

Висячие покрытия за последние го­ды находят все большее распростра­нение, особенно при строительстве промышленных зданий с большими пролетами.

Основное достоинство висячего по­крытия - его несущая конструкция - ванты (стальные тросы) - работает только на растяжение, благодаря чему сечение вантов подбирают исключи­тельно из условий прочности. Кроме того, висячие конструкции просты в монтаже, их можно применять при любой конфигурации плана здания, они имеют небольшую строительную высоту, транспортабельны.

Подстропильные конструкции. В тех случаях, когда шаг колонн каркаса превышает шаг несущих конструкций покрытия - балок или ферм, их опи­рают на подстропильные конструкции. Железобетонные под­стропильные конструкции устраивают в виде балок высотой 1500 мм или в ви­де ферм высотой 2200 и 3300 мм. Под­стропильные конструкции применяют в зданиях, технологический процесс в которых требует широкого шага опор. Стропильные конструкции - балки или фермы - опирают на под­стропильные конструкции по нижнему поясу, так как такое решение умень­шает высоту здания.

Несущие элементы ограждающей части покрытий. При плоских и скат­ных несущих конструкциях промыш­ленных зданий несущие элементы ог­раждающей части покрытий могут быть выполнены с применением про­гонов, по которым укладывают мелко­размерные плиты, или в виде крупно­размерных плит. В первом случае по­крытие получило название прогонного, и во втором - беспрогонного.

Связи. Каркасы промышленных зданий должны обладать простран­ственной жесткостью. Когда несущие элементы ограждающей части покры­тия выполняют в виде крупноразмер­ных плит, то жесткость каркаса здания и покрытия достигают установкой связей и диском покрытия. При про­гонных покрытиях жесткость обеспе­чивают только связями.

Связи подразделяют на вертикальные и горизонтальные. Первые устра­ивают между колоннами и в покры­тиях, вторые - только в пределах по­крытий. Конструкция связей зависит от высоты здания, величины пролета, шага колонн каркаса, наличия мосто­вых кранов и их грузоподъемности. Связи не только обеспечивают жест­кость каркаса здания, но и восприни­мают горизонтальные ветровые на­грузки, действующие на торцы здания, фонари, горизонтальные тормозные усилия от мостовых опорных и под­весных кранов, а также придают ус­тойчивость сжатым поясам попереч­ных ферм и рам.

Вертикальные связи между колон­нами обеспечивают каркасу здания геометрическую неизменяемость и про­дольную жесткость, собирают все го­ризонтальные усилия с покрытия и продольных рам и передают их на фундаменты. Связи по колоннам уста­навливают в каждом ряду посереди­не температурного блока.

По своему конструктивному реше­нию связи могут быть крестовыми и портальными. Крестовые связи при­меняют при шаге колонн каркаса 6 -12 м и высоте до головки подкрано­вого рельса 6 -12,6 м, портальные - при шаге колонн 12 и 18 м и высоте до головки подкранового рельса 8 - 14,6 м. При портальных связях легче организовать пропуск напольного транс­порта. В бескрановых промышленных зданиях силовые воздействия, возни­кающие от ветровой нагрузки, дейст­вующей на торцы зданий, восприни­мают сварными швами, соединяющи­ми плиты с несущими конструкциями покрытий, а вертикальные связи меж­ду колоннами в этом случае не ставят. Вертикальные связи обычно изготов­ляют из прокатных профилей и мон­тируют на сварке. Для крепления связей в колоннах пре­дусматривают дополнительные за­кладные детали.

Вертикальные связи в покрытии не ставят, если здание имеет скатную кровлю, а высота несущих конструк­ций покрытия составляет на опорах не более 900 мм или когда покрытие решено с подстропильными конструк­циями. В этом случае действующие горизонтальные нагрузки передают непосредственно через опорные части несущих конструкций покрытия или их воспринимают подстропильные конст­рукции. Когда высота балок или ферм на опорах более 900 мм, в покрытии устанавливают вертикальные связи в крайних ячейках температурного блока здания по продольным осям в местах опор несущих конструкций покрытия.

Вертикальные связи представляют собой стальные фермы с параллель­ными поясами пролетом, равным шагу колонн каркаса. Горизонтальные связи устанавли­вают по верхним и нижним поясам основных несущих конструкций покры­тия. Роль горизонтальных связей по верхнему поясу поперечных ферм и рам при беспрогонном решении вы­полняют крупнопанельные плиты по­крытия, прикрепленные через заклад­ные стальные детали сваркой к риге­лям. В зданиях, оборудованных мос­товыми кранами тяжелого режима ра­боты, для восприятия действующих на покрытие горизонтальных попереч­ных сил устраивают стальные кресто­вые горизонтальные связи, при этом плиты покрытия работают только как распорки. Горизонтальные связи по нижнему поясу несущих конструкций покрытия устанавливают в зданиях, оборудован­ных мостовыми кранами с тяжелым режимом работы, или в тех случаях, когда имеется технологическое обору­дование, которое вызывает колебание конструкций. Горизонтальные связи, располагаемые по нижнему поясу не­сущих конструкций покрытия, выпол­няют в виде крестовых элементов из прокатной стали, образуя ферму с па­раллельными поясами, называемую ветровой.

СТАЛЬНЫЕ КАРКАСЫ ОДНОЭТАЖНЫХ ЗДАНИЙ

Применение стальных конструкций для каркасов одноэтажных промыш­ленных зданий особенно целесообразно в отдаленных районах нашей страны (Дальний Восток, Крайний Север, Си­бирь и др.), труднодоступных и сейс­мических районах.

Стальной каркас одноэтажного про­мышленного здания имеет конструк­тивную схему, аналогичную железобе­тонному каркасу.

Стальные колонны каркаса в зави­симости от их поперечного сечения разделяют на сплошные постоянного и переменного сечения, решетчатые (сквозные) переменного сечения, раздельные пе­ременного сечения Нагрузку от колонн на фундаменты передают через башмаки, которые кре­пят к фундаментам анкерными болта­ми. Размеры башмаков определяют расчетом; они зависят от величин на­грузок, передаваемых колоннами. Башмаки располагают на 500- 600 мм ниже уровня пола. Во избежа­ние коррозии башмак обетонивают. Фундаментные балки при стальных кар­касах выполняют железобетонными.

Обвязочные балки в стальном кар­касе устраивают из одного профиля (швеллера или двутавра) или состав­ного сечения.

Стальные фермы могут быть раз­личной формы и очертания, выбор ти­па ферм зависит он назначения и объемно-планировочного решения про­мышленного здания. В практике строи­тельства применяют фермы с парал­лельными поясами, полигональные, треугольные, с параллельными пояса­ми с затяжкой, сегментные, парабо­лические и др.

Стальные рамы предназначены для устройства несущих конструкций по­крытий при больших пролетах. По срав­нению с балочными рамные покрытия имеют меньшую массу, большую жес­ткость в поперечном направлении и меньшую высоту ригеля. Недостатка­ми рамных конструкций являются боль­шая ширина колонн и чувствитель­ность к неравномерным осадкам опор

КАРКАСЫ МНОГОЭТАЖНЫХ ЗДАНИИ

Для легкой, пищевой, электротех­нической, химической, машино- и при­боростроительной промышленности, как правило, строят многоэтажные здания с сеткой колонн 6 Хби9 Хбм с одинаковыми пролетами во всех эта­жах, с увеличенными пролетами в верхних этажах и под­весными или опорными кранами.

Элементы каркаса многоэтажных промышленных зданий должны обла­дать высокой прочностью, устойчи­востью, долговечностью, огнестой­костью. Поэтому для этих зданий применяют железобетонные конструк­ции, которые могут быть монолитными, сборно-монолитными и сборными.

Стальной каркас применяют при больших нагрузках, при наличии ди­намических воздействий на несущие конструкции от работы оборудования или при строительстве зданий в трудно­доступной местности. Стальные колон­ны и ригели, как правило, изготовляют двутаврового сечения.

Каркасы из унифицированных же­лезобетонных элементов заводского изготовления бывают с балочными или безбалочными перекрытиями. Балоч­ные перекрытия как более простые и универсальные применяют чаще. Безбалочные перекрытия применяют при больших полезных нагрузках и при необходимости получить гладкую поверхность потолка, что позволяет устраивать подвесной транспорт и развязку коммуникаций в любом направлении, а также улучшает санитарно-гигиенические качества помещений.

Железобетонный каркас много­этажных зданий с балочными пере­ крытиями предназначен для зданий высотой до пяти этажей с сеткой ко­лонн 6x6 и 9X6 м. Основные элементы каркаса: колонны с фунда­ментами, ригели (прогоны), плиты перекрытий и связи. Ригели каркаса изготовляют прямоугольной формы и с полками, их располагают, как правило, поперек и в отдельных случаях вдоль здания. Совместно с колоннами ригели обра­зуют рамы.

Каркас состоит обычно из попе­речных рам, на ригели которых укла­дывают плиты перекрытий. Рамы кар­каса собирают из вертикальных элементов колонн и горизонтальных элементов ригелей, которые соединяют между собой в узлах. Поперечные рамы каркаса обеспечивают жесткость здания в поперечном направлении, а плиты перекрытий и стальные верти­кальные связи между колоннами - в продольном. При значительных гори­зонтальных нагрузках в продольном направлении здания устанавливают ригели, жестко соединяемые с колон­нами, которые образуют продольные рамы каркаса.

Колонны каркаса разделяют на крайние и средние. Для опирания риге­лей у колонн предусмотрены консоли. Основной тип колонны - высотой в два этажа, дополнительный - высо­той в один этаж сечением 400 X 400 и 400 X 600 мм. Колонны устанавли­вают в стаканы железобетонных фун­даментов, верх которых располагают на 150 мм ниже уровня чистого пола первого этажа.

Для устройства перекрытий приме­няют ребристые плиты двух типов: основные шириной 1500 мм и доборные шириной 750 мм. Высота плит 400 мм. Короткие плиты длиной 5050 и 5550 мм укладывают у деформационных швов и у торцов здания. Плиты перекрытий опира­ют на полки ригеля или на верхнюю плоскость ригеля. Второй вариант при­меняют в случаях, когда в перекры­тиях необходимо устраивать большие проемы для провисающего оборудова­ния. При равномерно распределенной нагрузке принимают опирание плит на полки ригелей, что уменьшает высоту перекрытия.

Колонны стыкуют путем приварки стыковых стержней к стальным ого­ловкам колонн. Зазор между торцами колонн тщательно зачеканивают жестким раствором, затем стык обер­тывают металлической сеткой и замоноличивают.

Железобетонный каркас с безба­ лочными перекрытиями состоит из вер­тикальных элементов колонн с капи­телями и плит, опертых на эти капители, образующих междуэтажные перекрытия. Каркас этого типа при­меняют в промышленных зданиях, складах, холодильниках, мясокомби­натах при квадратной сетке колонн, чаще всего 6 X 6 м, и при больших полезных нагрузках. Различают каркасы с безбалоч­ными перекрытиями с надколонными плитами, расположенными в двух направлениях, и над­колонными плитами, укладываемыми в одном направлении.

Требования пожарной безопасно­ сти в конструктивных решениях про­ мышленных зданий сказываются прежде всего в устройстве противопо­ жарных преград, т. е. противопожар­ных стен , противопожарных зон , а в многоэтажных зданиях - в устройстве несгораемых перекрытий.

Противопожарные преграды раз­деляют объем здания на отдельные части, ограничивая при возникновении пожара распространение огня преде­лами одной части здания. Кроме того, с помощью противопожарных преград выделяют наиболее огнеопасные поме­щения.

Противопожарные преграды выполняют из несгораемых конструкций. Противопожарные стены располагают поперек или вдоль здания, разделяя междуэтажные перекрытия, покрытия, фонари и другие конструктивные эле­менты из несгораемых или трудносго­раемых материалов. Противопожар­ные стены устанавливают на самостоя­тельные фундаменты либо на несущие несгораемые конструкции перекрытий.

Противопожарные стены выпол­няют выше уровня кровли на 0,6 м, если хотя бы один из элементов покрытия, за исключением кровли, выпол­нен из сгораемых материалов, и на 0,3 м, если все элементы покрытия, за исключением кровли, выполнены из трудносгораемых и несгораемых ма­териалов.

В цехах, оборудованных мостовы­ми кранами, противопожарные стены располагают только в верхней части здания. Расстояния между противопо­жарными стенами назначают в зависи­мости от категории пожарной опаснос­ти производства, степени огнестойкос­ти, этажности здания и приводятся в строительных нормах и правилах. Уст­ройство проемов в противопожарных стенах не рекомендуется.

Противопожарные зоны устраива­ют шириной не менее 6 м. Они пере­резают здание по всей его ширине. На участках противопожарных зон все конструктивные элементы здания вы­полняют из несгораемых материалов. Если противопожарная зона располо­жена вдоль здания, то она представ­ляет собой противопожарный пролет, все конструкции которого изготовляют также из несгораемых материалов. По краям противо­пожарной зоны устраивают из несго­раемых материалов гребни, размер которых принимают аналогично выс­тупам противопожарных стен.

В многоэтажных зданиях для пре­дупреждения распространения огня по вертикали устраивают несгораемые перекрытия, а производства, наиболее опасные в пожарном отношении, как было указано, располагают на верх­них этажа

ПОНЯТИЕ О ГЕНЕРАЛЬНОМ ПЛАНЕ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

Промышленные предприятия - важнейшая составная часть совре­менных городов, которая в большин­стве случаев определяет их возник­новение и развитие. Следовательно, одна из основных задач в области промышленного строительства - за­дача, связанная с оптимальными гра­достроительными решениями промыш­ленных объектов и их комплексов.

Размещение промышленных предприятий производят на основе схем или проектов районной планировки, которые составляют на перспективу для всех экономических районов стра­ны, что позволяет обоснованно осу­ществить выбор строительной пло­щадки (при этом учитывают гене­ральный план существующего насе­ленного пункта и проект планировки промышленного района).

Промышленные узлы в зависимо­сти от вида производства и сте­пени выделения производственных вредностей можно размещать вне го­рода вдали от селитебной территории, на периферии селитебной территории, в ее пределах, т. е. внутри города. Промышленные предприятия раз­мещают в соответствии с положения­ми, предусмотренными СНиП П-89-80. «Генеральные планы промышленных предприятий».

При размещении промышленных узлов учитывают организацию внеш­них производственных, транспортных и других связей с окружающими предприятиями и существующие ин­женерные сети, связи с селитебной территорией; расположение мест для отвалов, водоразборных и очистных сооружений; наличие транспортных, инженерных и других объектов, свя­занных с производственной деятель­ностью предприятий; перспективу раз­вития отдельных предприятий и райо­на в целом.

При проектировании промышлен­ных узлов принимают во внимание природные особенности района строи­тельства: температуру воздуха, пре­обладающее направление ветра, нали­чие вечномерзлых грунтов и возмож­ные изменения их режима, снего-заносимость, сейсмичность, наличие рек и водоемов, ценных сельскохозяй­ственных угодий и др.

Строительство промышленных предприятий или их групп не допу­скают на территориях, где находится залегание полезных ископаемых; име­ются отвалы породы угольных и слан­цевых шахт или обогатительных фаб­рик; обнаружены явления активного карста, зоны оползней, селевых пото­ков, снежных лавин; расположены зо­ны памятников истории архитектуры, искусств, археологии; проходят за­щитные зоны городов и т. п.

В городе могут быть размещены один или несколько промышленных районов (Промышленным узлом или районом считают территорию, на которой расположена объеди­ненная группа промышленных предприятий, имеющая общие коммуникации, инженерные сооружения, вспомогательные производства и хозяйства, а при соответствующих условиях и кооперацию основных производств).

Планировка промышленных райо­нов может быть ленточная (вдоль се­литебной территории) и глубинная. Ленточную планировку промышленного района применяют при расположении производственных предприятий, имеющих по санитарной классификации одинаковый или близ­кий класс, глубинную - при различ­ном классе.

Промышленный район или терри­торию промышленного предприятия делят проездами и магистралями на кварталы. Объединение нескольких кварталов между продольными проез­дами образует панель, и застройку называют квартально-панельной. Объединение в блок кварталов про­мышленного предприятия с закончен­ной частью технологического процесса позволяет создать блочную или квар­ тально-блочную застройку. Габариты кварталов, панелей и блоков зависят от вида производства, его мощности и санитарной харак­теристики.

Промышленный район обычно име­ет один или несколько обществен­ных центров с радиусом обслужива­ния 1,5-2 км. В каждом центре рас­полагают учреждения административ­ного, культурно-бытового, научно-тех­нического и спортивного обслужива­ния общерайонного значения.

Генеральный план промышленного предприятия решают с учетом гене­рального плана всего промышленно­го района. Он представляет собой комплексное решение планировки, за­стройки, транспорта, инженерных ком­муникаций и благоустройства произ­водственной территории.

При проектировании генеральных планов промышленных районов и от­дельных предприятий большое внима­ние уделяют зонированию территории, которое осуществляют по производст­венному функциональному (техноло­гическому) признаку.

Всю производственную территорию промышленного предприятия или райо­на подразделяют на четыре зоны: пер­вую - предзаводскую, включающую заводские вспомогательные здания, предназначенные для размещения ад­министрации, медицинских учрежде­ний, учебных помещений, помещений для общественных организаций и куль­турного обслуживания, лабораторий, научно-исследовательских подразделе­ний; проходных, стоянок для пассажир­ского транспорта, предзаводские пло­щади и др.; вторую - производствен­ ную, в которой сосредоточивают произ водственные цехи основного и вспо­могательного назначения; третью - подсобную , в которой располагают энергетические объекты, наземные и подземные инженерные коммуникации и т. п.; четвертую - складскую, в ко­торой располагают здания для хране­ния материалов, полуфабрикатов и го­товой продукции, а также транспорт­ные здания и сооружения (гаражи, де­по, сортировочные станции и т. д.). На предприятии и между предприя­тием и селитебной территорией долж­ны быть обеспечены рациональные производственные, транспортные и ин­женерные связи.

При зонировании территории про­мышленного предприятия большое вни­мание уделяют проблеме, связанной с передвижением людских и грузовых потоков (зонирование по степени тру­доемкости цехов).

Для рабочих и служащих создают пассажирские и пешеходные пути со­общения, которые позволяют безопас­но и с наименьшей затратой времени передвигаться по предприятию. Людские потоки должны быть изолированы от грузовых, путь следо­вания как людей, так и грузов должен быть минимальным. Пересечения люд­ских и грузовых потоков располагают на разных уровнях.

При проектировании генеральных планов промышленных предприятий и районов выработался определенный по­рядок расположения зон, при котором может быть достигнуто четкое разде­ление людских и грузовых потоков от селитебной территории: первая - предзаводская; вторая - производст­венная (основные и вспомогательные цехи); третья - складская; четвер­тая - подсобная.

Проводят также санитарное и про­тивопожарное зонирование территории по степени вредности и пожарной опас­ности отдельных производств. В этих целях цехи группируют по количеству выделяемых вредностей, производствен­ному шуму, взрыво - и огнеопасности.

Кроме горизонтального зонирова­ ния промышленных территорий осуществляют и вертикальное. В послед­нем случае различают три зоны: на­земную (пути передвижения людей и грузов), надземную (основные произ­водственные цехи и другие здания) и подземную (склады и некоторые вспо­могательные цехи).

При проектировании генеральных планов стремятся к компактности заст­ройки, что главным образом обеспе­чивается блокированием производст­венных зданий. На перспективу с целью дальнейшего расширения и реконструк­ции предприятия оставляют резервные территории как на промышленной пло­щадке, так и за ее пределами. Плотность застройки промышлен­ных площадок принимают в пределах, предусмотренных нормами; в зависи­мости от отрасли промышленности площадь застройки составляет 30- 60% общей площади территории про­мышленного предприятия.

СНиП П-89-80 «Генеральные пла­ны промышленных предприятий» рег­ламентируют размещение зданий и сооружений, въездов, проездов, рас­стояния между зданиями и сооруже­ниями, вертикальную планировку, бла­гоустройство, озеленение и размещение инженерных сетей.

Вспомогательные здания и помещения промышленных п редприятий

Проектирование вспомогательных зданий и помещений осуществляют с учетом климатических особенностей района строительства, санитарно-ги­гиенических, противопожарных требований. Необходимо учитывать также, что комплекс вспомогательных зданий су­щественно влияет на формирование архитектурной композиции всего про­мышленного предприятия, поэтому при проектировании должно быть обеспече­но архитектурно-композиционное един­ство основных производственных и вспо­могательных зданий. Вспомогательные помещения могут располагаться в отдельно стоящих зданиях , в специальных пристройках к производственным зданиям, т. е. «пристроенных вспомогательных зда­ниях», а также внутри производствен­ного здания, т. е, быть «встроенными вспомогательными помещениями» . Вы­бор того или иного решения зависит от санитарной характеристики технологического процесса, размеров террито­рии промышленного предприятия, чис­ла работающих и других факторов.

Санитарно-бытовые помещениямо­гут быть общие и специальные. К об­ щим относят: гардеробные, умываль­ные, уборные, курительные, помещения для кормления грудных детей и др. К специальным - душевые, помеще­ния для стирки, химической чистки, сушки, обеспыливания, обезвоживания и ремонта специальной одежды и обу­ви; помещения и устройства для обог­ревания или охлаждения работающих; для расположения оборудования нож­ных ванн или полудушей; помещения с устройствами для питьевого водоснабжения, респираторные, кладовые для чистой и грязной одежды и др.

По назначению вспомогательные помещения подразделяют на следую­щие основные группы:

Предприятия общественного пита­ ния (общее, диетическое, а в необхо­димых случаях лечебно-профилакти­ческое) предусматривают: столовые-заготовочные, столовые-доготовочные, буфеты, комнаты приема пищи, а в от­дельных случаях рестораны, кафе, за­кусочные, передвижные буфеты, поме­щения для размещения торговых авто­матов, киоски и др.

Помещения для профессионально- технического обучения включают: учеб­ные помещения для общеобразователь­ной подготовки (школы рабочей моло­дежи), учебные рабочие места, учеб­ные участки, классы, помещения для производственного обучения (помеще­ния для учебных занятий и здания для производственного обучения), по­мещения для специального техническо­го образования (профессионально-тех­нические училища, отделения вечерних техникумов и вузов).

Помещения здравоохранения: боль­ницы (стационары), амбулатории, по­ликлиники, профилактории, здравпунк­ты, ингалятории, фотарии, мани­кюрные, помещения для личной ги­гиены женщин, помещения для ручных ванн, аптеки, санитарно-эпидемиоло­гические станции, подстанции скорой помощи и др.

Помещения культурного и спортив­ ного обслуживания: культурно-просве­тительные учреждения (красные угол­ки, библиотеки, кабинеты политическо­го просвещения, музеи заводов, залы собраний, клубы,

Коммунально-бытовые и торговые помещения включают: помещения комплексных приемных пунктов (хим­чистка, прачечная, ателье, ремонтные мастерские), комбинаты бытового об­служивания (парикмахерские, косме­тические кабинеты), столы заказов, гостиницы, общежития для приезжих. Помещения для выездных распродаж, пункты торговли на общественных на­чалах (продажа книг в цехах), уни­версамы (магазины по продаже про­довольственных и промышленных то­варов повседневного спроса).

Помещения административно-тех­ нического назначения и общественных организаций включают: рабочие ком­наты сотрудников различных служб, залы совещаний, кабинеты инженерно-технического персонала, секретариаты, машинописные бюро, выставочные по­мещения, помещения для творчества общественных изобретателей и рацио­нализаторов, лаборатории, научно-технические библиотеки, научно-иссле­довательские институты и их филиалы. В состав помещений общественных ор­ганизаций входят кабинеты и комнаты для партийной, комсомольской и проф­союзной организаций, редакций мно­готиражной газеты и радиовещания и др.

Помещения технического обслужи­ вания включают: счетно-вычислитель­ные станции, вычислительные центры, автоматические телефонные станции, радиоузлы, фотолаборатории, копиро­вальные, архивы, а также помещения для устройств инженерного оборудо­вания зданий: водопроводного и теп­лового вводов, бойлерной, приточных, вытяжных и вентиляционных камер и кондиционеров, помещения охраны предприятий, проходные, пожарные де­по, газоспасательные станции.

Вспомогательные здания проекти­руют, как правило, II класса с улуч­шенной отделкой и расчетным сроком службы 50-100 лет. Степень огнестой­кости здания зависит от числа этажей и площади этажа между привопожарными стенами. Ее назначают соглас­но СНиП П-92-76 Вспомогательные здания и помещения промышленных предприятий.

Степень огнестойкости вспомога­тельных зданий, в которых размещены залы собраний, совещаний, столовых, зависит от вместимости зала и от эта­жа здания, на котором зал распола­гают, и принимают согласно тем же нормам.

Вспомогательные здания также подразделяют по времени их исполь­зования на объекты, используемые в течение рабочего дня, и объекты, ис­пользуемые до или после рабочего дня.

Состав вспомогательных помеще­ний зависит от ряда факторов и в том числе от числа работающих на производстве, которых подразделяют на следующие категории: рабочие производственные и вспомогательные, инженерно-технический состав, счетно-кон; торско-хозяйственный и младший обслуживающий персонал.

Согласно СНиП П-92-76 на про­ектирование вспомогательных зданий производственные процессы по сани­тарным характеристикам подразделя­ют на четыре группы:

групп I подразделена на три под­группы: а, б, в - характеризует производственные процессы, протекающие при нормальных условиях и при от­сутствии вредных газов;

группа II в составе пяти подгрупп: а, б, в, г, д - характеризует произ­водственные процессы, протекающие при неблагоприятных метеорологиче­ских условиях, или процессы, связан­ные с выделением пыли или с напря­женной физической работой;

группа III , имеющая четыре под­группы: а, б, в, г - характеризует про­изводственные процессы, протекающие с резко выраженными факторами вредностей и с загрязнением рабочей одежды;

группа IV с тремя подгруппами: а, б, в - характеризует производствен­ные процессы, требующие особого ре­жима для обеспечения качества про­дукции.

Обычно гардеробные, душевые и умывальные объединяют в так назы­ваемые «гардеробные блоки». Гарде­робные предназначаются для хранения уличной, домашней и специальной одежды. При производственных про­цессах групп I, II а - гардеробные блоки устраивают общими для всех видов одежды, а для остальных - отдельными для каждой из этих групп. При производственных про­цессах групп II (за исключением II а), IIIи IV предусматривают отдельные гардеробные для специальной одежды. Гардеробные специальной одежды при производственных процессах групп II г (при числе работающих в наиболее многочисленной смене более 30, III а, III б, III г и IV б должны быть от­дельными для каждой из указанных групп. Гардеробные уличной, а также уличной и домашней одежды во всех случаях могут быть общими для всех групп производственных процессов. От­дельные гардеробные для специальной одежды предусматривают также при производственных процессах группы I в, если по условиям работы возни­кает необходимость в полном (вклю­чая белье) переодевании. Общие гар­деробные для всех видов одежды пре­дусматривают при производственных процессах групп II, III б и IV, если по условиям работы не возникает не­обходимости в полном (включая белье) переодевании.

Умывальную располагают смежно с гардеробными специальной одежды, общими гардеробными или на предус­матриваемой для этой цели площади в указанных гардеробах. Душевые раз­мещают смежно с гардеробными. При душевых предусматривают преддушевые, которые предназначены для вы­тирания тела, а при душевых в гардеробных для совместного хранения всех видов одежды - также и места для переодевания. В этом случае, когда гардеробные уличной и домашней одеж­ды и гардеробные специальной одеж­ды располагают в отдельных помеще­ниях, между ними располагают душе­вые и преддушевые помещения. Рабо­чие, идущие на работу, проходят из гардероба уличной и домашней одежды в гардероб специальной одежды через проход, минуя преддушевую; при воз­вращении с работы они проходят через преддушевую и душевую.

Для производственных процессов групп II и III возникает потребность в отдельных бытовых помещениях, связанных с сушкой специальной одеж­ды, ее обеспыливанием, хранением чис­того и грязного белья, респираторов и др.

Схема функционального зонирования вспомо­ гательного здания, пристроенного к цеху


1- мужские бытовые помещения; 2 - женские бытовые помещения; 3 -столовая; 4 - медицинский пункт; 5 - помещения для инженерно-технического персонала; 6 - по­мещения для конструкторских бюро, учебных занятий и общественных организаций: 7 - помещения культурного обслуживания; 8 - вестибюль, холл 2-го этажа и коридоры; . 9- .вертикальные коммуникации.

ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ И КОНСТРУКТИВНЫЕ РЕШЕНИЯ ВСПОМОГА­ ТЕЛЬНЫХ ЗДАНИЙ И ПОМЕЩЕНИЙ И ИХ ОБОРУДОВАНИЕ

Объемно-планировочные решения вспомогательных зданий, как правило, разрабатывают на основе унифици­рованных габаритных схем или типо­вых планировочных элементов. Унифицированные габаритные схе­мы чаще всего имеют ширину 12 (для пристроенных) или 18 м (для отдельно стоящих) зданий, при длине 36, 48, 60 м и числе этажей два-четыре.

Нормативная высота этажей вспо­могательных зданий в зависимости от назначения помещений может быть 3; 3,3; 3,6; 4,2; 4,8 м.

Высоту этажа 3,6 или 4,2 м прини­мают, если не менее 60% его площади предназначено для размещения залов столовых, собраний и совещаний пло­щадью более 300 м 2 или помещений, увеличение высоты которых обус­ловлено габаритами размещаемого оборудования. Ширину коридоров и проходов в вспомогательных зданиях целесооб­разно назначать, пользуясь расчетом вынужденной эвакуации, учитываю­щей число людей, пользующихся эти­ми помещениями. Однако ширина ко­ридоров и проходов не может быть соответственно меньше 1,4 и 1м

Наружные стены вспомогательных зданий устраивают самонесущими или навесными и выполняют их из крупных панелей. Плоскость стены образуют путем взаимосочетания этажных, цокольных, фризовых и импостных панелей и оконных блоков.

Наряду с применением полной каркасной конструктивной схемы вспомогательного здания в практике строительства продолжают еще при­менять конструктивные схемы с неполным каркасом и с несущими кирпич­ными стенами. При этом несущие ригели располагают вдоль или поперек здания, а панели соответственно поперек здания с опиранием на наруж­ные стены или вдоль здания с опира­нием на поперечно размещенные ри­гели.

Покрытия над вспомогательными зданиями устраивают или бесчердач­ные с внутренними водостоками, ана­логично утепленным покрытиям промышленных зданий, или с черда­ком. На покрытии устраивают выход из лестничной клетки

А

рхитектурно-композиционные решения промышленных зданий

ПРИЕМЫ АРХИТЕКТУРНЫХ РЕШЕНИИ ПРОМЫШЛЕННЫХ ЗДАНИИ

Внешний облик промышленного здания главным обра­зом зависит от протекающего в нем технологического процесса. Его влия­ние распространяется на материал и тип несущих и ограждающих конструк­ций здания, на решение световых, аэрационных и других проемов в сте­нах и покрытиях, на профиль покрытия и другие элементы здания.

Однако наиболее существенное влия­ние на архитектурный облик промыш­ленного здания оказывают инженер­ные сооружения специального назна­чения (бункера, эстакады и пр.), выве­денные наружу элементы технологи­ческого оборудования, конструктивные элементы, назначение и формы кото­рых обусловлены технологическим про­цессом (рампы, козырьки над ними, места ввода коммуникаций и т. п.).

Промышленные здания могут иметь как фронтально-симметричные, так и фронтально-асимметричные компози­ ции, причем последние получили наи­большее распространение, поскольку легче согласуются с требованиями тех­нологических процессов. Для объемно-планировоч­ных и конструктивных решений про­мышленных зданий, выполненных с учетом требований типизации и унифи­кации, характерны крупные формы элементов несущих и особенно ограж­дающих конструкций. Крупные элемен­ты фасада, масштабно взятые по отно­шению к окружающей застройке, не­редко позволяют достигнуть вырази­тельной архитектуры здания. Большая протяженность многих промышленных зданий вынуждает в композиции при­бегать к многократной повторяемости одного и того же элемента. При реше­нии подобных композиций используют прием ритмического, метрического ряда.

Ритмичные членения фасада могут быть образованы чередованием глухих и остекленных участков стены, несу­щих конструкций покрытия, повторе­нием одинаковых объемов зданий. Тектоника архитектурной композиции современных промышлен­ных зданий определяется индустриаль­ными конструктивными решениями - конструктивной схемой здания в целом и конструктивными решениями отдель­ных элементов, например стен, окон­ных заполнений, несущих конструкций покрытия. Соблюдение пропорциональ­ных соотношений между отдельными элементами способствует повышению архитектурной выразительности здания.

При пропорционировании учиты­вают унификацию и модульность кон­структивных элементов, образующих промышленное здание. При этом мож­но использовать контрастные пропор­ циональные соотношения. Например, стандартные стеновые железобетонные панели размером 1,2x6 и 1,8x6 м соз­дают пропорциональные соотношения между сторонами панелей 1:5, 1:3, а стеновые панели размером 1,2x12 и 1.8X12 м - - 1: 10, 1:7.

Тектоника конструктивной схемы здания может быть четко выражена на фасаде и стать основным элемен­том его архитектурной композиции. Членения фасада могут быть верти­кальными или горизонтальными. Основной мотив решения может быть создан рисунком каркаса, стойками и ригелями, вынесенными на фасад.

Для современных одноэтажных и многоэтажных промышленных зданий наиболее характерны горизонтальные членения фасадов, которые обусловле­ны применением навесных стен из ти­повых крупных панелей длиной 6 м, а также устройством ленточных све­товых проемов и солнцезащитных устройств, придающих композиции ди­намичный характер. Архитектурное решение фасада промышленного здания во многом за­висит от профиля покрытия. Примене­ние покрытий с различным очертанием поверхности (прямолинейное, криво­линейное, пилообразное и т. д.) в соче­тании с элементами стены позволяет достигать различных композиционных решений фасада. Большая протяженность фасадов промышлен­ных зданий, особенно при ленточном и сплошном остеклении, вызывает впе­чатление монотонности, однообразия. Поэтому для повышения архитектур­ной выразительности здания прибега­ют к контрастам, образованным от­дельными элементами фасада. Конт­растными могут быть решения главно­го и торцового фасадов производст­венного и вспомогательного зданий. Могут быть также выделены ворота, жалюзи, вентиляционные шахты и другие технологические элементы.

Контрастное выделение отдельных элементов на фасаде промышленного здания дает возможность его зритель­ной оценки, масштабно сопоставитьотдельные части здания. Так, напри­мер, металлическая наружная лестни­ца или вход могут придать нужную масштабность зданию или сооруже­нию в целом.

Акцент отдельных конструктивных элементов фасада промышленного здания играет существенную роль в его общем композиционном решении. Обычно акцентируют углы здания, пе­ремычки над проемами, козырьки над входами, наружные открытые лестни­цы. Акцентом могут быть фасады про­мышленных зданий, в композиции ко­торых удачно использованы техноло­гические элементы: рампы для погруз­ки или разгрузки изделий, козырьки над ними, позволяющие производить грузовые операции в любую погоду. Эти элементы выявляют, кроме того, промышленный характер здания.

Архитектурной выразительности промышленных зданий достигают, кроме того, путем использования та­ких композиционных средств, как ма­ лые архитектурные формы: светильни­ки, флагштоки и др., а также цвет, фактура материала и средств мону­ментального искусства.

Большое значение в формировании архитектурно-художественного образа здания играют новые строительные материалы. Применение для стеновых панелей и оконных заполнений алюми­ния, нержавеющей стали, медных сплавов, эмалей, стекла, пластиков и других новых материалов придает внешнему виду здания индивидуальный характер.

Конструктивные и объемно-планировочные решения – один из разделов проектной документации, содержащий детальную проработку несущих конструкций здания. Специалисты компании «PNProject» на высочайшем профессиональном уровне принимают грамотные и обоснованные проектные решения, обеспечивая гарантированную жесткость, прочность и устойчивость здания. Основная задача проектанта – разработать конструкцию несущих элементов строительного объекта, подобрать оптимальную номенклатуру материалов и определить точный объем строительных работ по возведению фундамента, стен, перекрытий, кровли здания.

Целью разработки объемно-планировочных решений является согласование конструктивных решений с эксплуатационными, функциональными, эстетическими особенностями объекта с учетом экономических требований. Разработка проекта на данном этапе сопровождается сложными расчетами, которые мы выполняем с применением специальных компьютерных программ. Такой подход позволяет полностью устранить риск возникновения ошибок проектирования. В ходе разработки конструктивных решений мы руководствуемся Правительственным Постановлением №87 "О составе разделов проектной документации и требованиях к их содержанию" и ГОСТ 21.101 «Основные требования к проектной и рабочей документации».

Исходными данными для разработки конструктивных и объемно-планировочных решений служат:

  • государственные стандарты, нормы и правительственные постановления;
  • архитектурные решения;
  • результаты инженерных изысканий;
  • функциональное назначение объекта;
  • климатические и сейсмические характеристики местности;
  • объем бюджета;
  • пожелания заказчика.

Этапы разработки раздела «Конструктивные и объемно-планировочные решения»

При разработке проекта технически сложного строительного объекта разработка конструктивных и объемно-планировочных решений осуществляется в два этапа.

  • Проектная документация. На стадии «Проект» решаются и обосновываются принципиальные вопросы, касающиеся конструктивных особенностей здания. Готовые проектные конструктивно-планировочные решения направляются на экспертизу.
  • Рабочая документация. После прохождения всех этапов согласования формируется комплект рабочих чертежей, необходимых для качественного выполнения строительно-монтажных работ.

Пояснительная записка

В текстовой части приводятся результаты инженерно-геологических, топографических изысканий , описываются климатические и метеорологические особенности местности. Все конструктивные решения зданий увязываются с прочностными, деформационными характеристиками грунта и прочими параметрами земельного участка, выделенного под строительство. В расчет берется уровень, состав грунтовых вод и степень их агрессивности по отношению к применяемым строительным материалам. В пояснительной записке приводятся расчеты всех строительных конструкций здания, обоснование принятых технических решений относительно всего строительного объекта и его отдельных узлов, включая подземную часть. В текстовом виде обосновывается целесообразность принятия конкретной схемы объемно-планировочных решений, подробно описывается компоновка помещений.

В пояснительную записку включено обоснование конструктивных решений с точки зрения требований пожарной безопасности, санитарно-гигиенических требований, тепло- и шумозащиты, гидро- и пароизоляции, защиты от вибраций, снижения общего уровня загазованности помещений и соблюдения безопасного режима электромагнитных излучений. В текстовой части размещается характеристика конструкций основных элементов здания – стен, полов, кровли, подвесных потолков, перегородок, перекрытий. Рассматриваются способы отделки помещений. Приводится список мероприятий, необходимых для защиты строительных конструкций от атмосферного разрушения, опасных техногенных факторов и природных чрезвычайных ситуаций.

Комплект чертежей

Раздел проекта «Конструктивные и объемно-планировочные решения» сопровождается комплектом рабочих чертежей. Графическая часть содержит поэтажные планы и разрезы здания, экспликацию помещений, спецификации, схемы каркасов конструкций, чертежи фасадов с описанием отделочных материалов, планы кровли, перекрытий, покрытий, фундамента. На чертежи разрезов зданий наносится расположение несущих конструкций и ограждений. Для указания уровня размещения полов, ферм, кровли и других конструктивных элементов используются относительные высотные отметки. При необходимости строятся фрагменты планов и разрезов здания.

В состав рабочей документации раздела «Конструктивные решения» входят следующие подразделы:

  • Конструкции металлические (КМ). Здесь отражены размерные параметры, сопряжения и спецификация строительных конструкций, изготовленных из металла.
  • Деталировочные чертежи металлических конструкций (КМД). В данном подразделе приводится подробная проработка узлов, фрагментов, деталей металлических конструкций.
  • Конструкции железобетонные (КЖ). В чертежах марки КЖ отражены конструктивные решения зданий, касающиеся фундамента, плит перекрытия, лестниц и других конструкций, изготовленных из железобетона.

Команда компании «PNProject» - это профессионалы в отрасли строительного проектирования. Наши специалисты используют в работе современное программное обеспечение, умеют находить решение сложных технических задач, следят за мировыми тенденциями развития отрасли, постоянно повышают уровень своей квалификации.

Чтобы получить более подробную консультацию по услугам нашей компании и сделать заказ на разработку проекта, свяжитесь с нами любым удобным способом – позвоните, напишите нам или заполните форму обратной связи.