Параметры воды для питья. Показатели качества питьевой воды и их санитарно-токсикологическая характеристика

Показатели качества питьевой воды и их санитарно-токсикологическая характеристика

К физическим показателям качества воды относят температуру, запах, привкус, цветность, мутность. Они определяют органолептические качества воды.

Химические показатели характеризуют химический состав воды. К ним обычно относят: водородный показатель воды рН, жесткость и щелочность, минерализация (сухой остаток), содержание органических и неорганических веществ.

Санитарно-бактериологические показатели характеризуют общую бактериальную загрязненность воды, загрязненность ее кишечной палочкой, содержание в воде токсичных и радиоактивных компонентов.

Эпидемические показатели. Вода является идеальной средой для размножения бактерий, микробов: возбудителей брюшного тифа, паратифов, холеры, дизентерии, вирусного гепатита и т.д. Вода может быть переносчиком различного рода глистов. В связи с обильным содержанием патогенных организмов, анализ воды проводят по «показательным» микробам (к примеру, кишечной палочке). Требования СанПиН - в 100 мл воды не должно быть кишечной палочки, количество бактерий в 1 мл воды не должно превышать 50.

Органолептические показатели .

Запах воды может быть: болотный, гнилостный, землистый, сероводородный, ароматический, хлорный, фенольный, хлорфенольный, нефтяной и др.

Привкус воды может быть: кисловатым, солоноватым, горьковатым, сладковатым.

Наличие запахов и привкусов говорит о содержании (возможно превышенном) в воде газов, минеральных солей, органических веществ, нефтепродуктов, микроорганизмов. Как правило, с повышением температуры запахи и привкусы усиливаются. Вода, используемая для питья, не должна иметь при температуре 60 о С оценку более 2 баллов.

Цветность - окраска воды в тот или иной цвет. Свидетельствует о наличии в воде выше нормы высокомолекулярных соединений почвенного характера, железа в коллоидной форме, загрязнений сточных вод. Цветность не должна превышать 20 о стандартной платинокобальтовой шкалы.

Мутность - иначе прозрачность. Зависит от наличия в воде взвешенных частиц. Использование мутной воды для питьевого водоснабжения нежелательно и даже недопустимо.

Химические показатели.

Водородный показатель рН - показатель концентрации в воде водородных ионов. Его величина характеризует фон водной среды: от кислого до щелочного. Для питьевой воды величина рН должна составлять от 6 до 9. Изменение значения рН должно быть сигналом о нарушении технологического режима водоподготовки.

Общая минерализация (сухой остаток) - суммарная концентрация анионов, катионов и растворенных в воде органических веществ. Влияет на органолептические свойства воды (вкуса). По сухому остатку можно судить о содержании в воде неорганических солей. Вода с повышенной минерализацией влияет на секреторную деятельность желудка, нарушает водно-солевое равновесие, в результате чего наступает рассогласование многих метаболических и биохимических процессов в организме. Содержание сухого остатка в питьевой воде нормируется величиной не более 1000 мг/л.

Жесткость воды - обусловлена наличием в ней катионов кальция и магния. Взаимодействуя с карбонатными ионами, при высоких температурах они образуют малорастворимые соли. Поэтому жесткие воды могут образовывать накипь и отложения на бытовой технике, котлах, трубопроводах горячей воды. При использовании жесткой воды для стирки белья ее необходимо предварительно умягчать. Установлена статистически достоверная связь между жесткостью воды и развитием сердечно-сосудистых заболеваний (частотой инфаркта миокарда). Есть предположение о роли жесткости воды в развитии мочекаменной болезни. Жесткость воды для питьевых целей ограничена концентрацией 7 ммоль/л.

Органические и неорганические вещества.

Общее число химических веществ, загрязняющих природные воды и оказывающих неблагоприятное воздействие на здоровье человека, в настоящее время превышает 50 000. Их содержание в воде строго регламентировано требованиями СанПиН. Гигиеническое значение их обусловлено их биологической ролью.

При содержании фтора в воде более 1,5 мг/л может развиться флюороз, менее 0,7 мг/л - кариес зубов.

Чрезмерное содержание молибдена в воде приводит к увеличению активности ксантиноксидазы, щелочной фосфотазы, увеличению мочевой кислоты в крови и моче.

При низком поступлении в организм йода , развивается эндемический зоб, внешне проявляющийся в увеличении размеров щитовидной железы.

Ртуть - токсичный элемент, наличие ее в воде приводит к болезни Минамата, для которой характерно поражение центральной нервной системы.

Алюминий - нейротоксичен, способен накапливаться в нервной ткани, печени и, что особенно важно, в жизненно важных областях головного мозга, приводя к тяжелым расстройствам функции центральной нервной системы.

Барий - высокотоксичное вещество. При поступлении в организм, барий аккумулируется в костной ткани, что усугубляет его опасность для здоровья.

Бериллий - высокотоксичный и кумулятивный клеточный яд. Хорошо всасывается в желудочно-кишечный тракт. При поступлении в организм высоких концентраций бериллия с питьевой водой, наблюдаются серьезные расстройства половой сферы у представителей обоих полов.

Мышьяк - считается доказанной, роль мышьяка, содержащегося в воде, в возникновении опухолевых заболеваний.

Нитраты и нитриты - нитраты в воде в 1,5 раза токсичнее нитратов содержащихся в овощах. Повышенное содержание нитратов в воде вызывает токсический цианоз. Всасывание нитратов приводит к повышению содержания метгемоглобулина в крови.

Свинец - кумулятивен в костях. Поражает нервную систему, почки, приводит к раннему атеросклерозу, нарушению процесса образования эритроцитов. Детским организмом свинец усваивается в 3-4 раза интенсивнее, чем взрослым.

Железо - вода, когда ее перекачивают насосом прозрачна и бесцветна. Но по мере того, как отдельные молекулы этого соединения собираются вместе, появляется характерный ржавый цвет (такую воду часто называют «красной водой» или «ржавой водой»). В воде, содержащей железо, неизбежно образовываются железобактерии - рассадник бактерий самого различного класса и уровня опасности для организма человека. По мере нарастания, эти бактерии образуют красно-коричневые наросты, которые забивают трубы и снижают напор воды. Разлагающаяся масса этих бактерий является причиной неприятного запаха и вкуса воды.

Вода с повышенным содержанием железа имеет металлический привкус. Такая вода оставляет следы буквально на всем. Даже при самом малом содержании железа в воде (0,3 мг/л) она оставляет ржавые пятна на любой поверхности. Железо добавляет много трудностей как в быту, так и в промышленности (особенно в пищевой). Даже там, где концентрация железа низка, его ни в коем случае нельзя игнорировать. Наличие железа в воде представляет серьезную проблему еще и потому, что оно обладает большой химической повторяемостью элементов. Нерастворимые соединения железа могут образовывать илистые отложения в водонапорных резервуарах, водонагревателях и других водопроводных установках.

Повышенное содержание железа в воде (а следовательно в организме человека) является причиной серьезных аллергенных заболеваний.

Марганец - спутник железа. Обычно его встречают в железосодержащей воде. Марганец, соприкасаясь с чем-либо, оставляет темно-коричневые или черные следы даже при его минимальных концентрациях в воде (0,05 мг/л). Собираясь в водопроводных трубах, марганец дает черный осадок, от чего вода становится мутной.

Повышенное содержание марганца отрицательно влияет на высшую нервную систему, систему кровообращения, на работу поджелудочной железы, провоцирует болезни эндокринной системы, увеличивает возможность заболеваний онкологического характера.

Не случайно, Стандарт питьевой воды США установил минимальную норму присутствия марганца в воде равную 0,05 мг/л.

Медь - придает воде неприятный вяжущий привкус.

Органолептические показатели качества питьевой воды

Показатели

Единицы измерения

Нормативы,

Цветность

Мутность

ЕМФ (единицы мутности по формазину)

или мг/л по коалину

1.7.2Химические показатели качества питьевой воды

Безвредность питьевой воды по химическому составу
(СанПиН 2.1.4.1071-01) определяется её соответствием нормативам по:

    обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации; содержанию вредных химических веществ, поступающих и образующихся в воде в процессе её обработки в системе водоснабжения; содержанию вредных химических веществ, поступающих в источник водоснабжения в результате хозяйственной деятельности человека.

ПДК предельно допустимая концентрация химических веществ в воде – это максимальная концентрация, при которой потребление воды человеком для питьевых и бытовых нужд в течение всей его жизни прямо или опосредованно не вызывает отклонений в состоянии организма, обнаруживаемых современными методами исследования сразу и в отдалённые сроки жизни настоящего и последующего поколения.

Обобщённые показатели качества питьевой воды.

Обобщёнными показателями качества питьевой воды являются: водородный показатель (рН), общая минерализация (сухой остаток), жёсткость общая, содержание нефтепродуктов, поверхностно-активные вещества (ПАВ), фенольный индекс. Они играют двоякую роль: с одной стороны это масштаб допустимого уровня, гигиенический норматив, с другой – это показатели стабильности исходной воды и работы очистных сооружений.

Водородный показатель (рН) по нормам СанПиН 2.1.4.1071-01 должен находиться в приделах 6-9. Колебания рН воды сами по себе даже за приделами диапазона требований стандарта не могут причинить вреда здоровью в силу наличия буферного резерва воды и соответствующих механизмов гомеостаза в организме. Основанием для регламентации рН являются зависимость растворимости «главных ионов» воды от рН и гидробиологических критериев (рН поверхностных водных объектов в средней полосе колеблется от 6,5-8,5). Кроме того, смещение рН за пределы, свойственные конкретному источнику водоснабжения или предусмотренные технологической картой водообработки, является сигналом поступления в источник воды другого состава, либо нарушением технологического режима водоподготовки.

Минеральный состав . Большое значение и разностороннее влияние оказывает на здоровье степень минерализации питьевой воды. Минерализация характеризуется двумя аналитически определяемыми показателями: сухим остатком (мг/л) и общей жёсткостью (ммоль/л). Содержание сухого остатка в питьевой воде нормируется величиной не более 1000,0 мг/л. При употреблении воды с повышенным солесодержанием наблюдается гиперминерализация организма человека, что приводит к появлению различных функциональных нарушений. Высокое значение жёсткость воды, обусловленное наличием ионов кальция и магния является фактором риска мочекаменной болезни. Норма общей жёсткости – 7,0 ммоль/л.

Окисляемость перманганатная является важным гигиеническим показателем качества воды. Наличие в природных водах органических и некоторых легкоокисляющихся неорганических примесей (сероводорода, сульфитов, закисного железа (Fe 2+) и др.) обуславливает определённую величину окисляемости воды. Резкое повышение окисляемости (ПДК=5,0 мгО 2 /л) свидетельствует о загрязнении водного источника и необходимости принятия, соответствующих мер. Наименьшей величиной окисляемости (~ 2 мгО 2 /л) характеризуются артезианские воды. Окисляемость грунтовых вод зависит от глубины их залегания. Грунтовые незагрязнённые воды имеют окисляемость, близкую к окисляемости артезианских вод. Окисляемость чистых озёрных вод – 5-8 мгО 2 /л; в речной воде она колеблется в широких пределах, доходя до 60 мгО 2 /л и более. Высокой окисляемостью воды отличаются реки, бассейны которых расположены в болотистых местностях – до 400 мгО 2 /л.

Нефтепродукты . Проблема загрязнения водных объектов нефтью и продуктами её переработки – одна из глобальных проблем ХХI века. В процессе добычи, транспортирования, переработки и потребления нефти и нефтепродуктов загрязняются все элементы среды обитания человека. Нефтепродукты могут выпадать в донные осадки, находиться в толще воды в виде эмульсии, быть растворёнными в воде, образовывать на поверхности плёнку. Наиболее выраженным неблагоприятным эффектом присутствия нефтепродуктов в водном объекте – изменение органолептических свойств воды: появление специфического запаха и радужных пятен на поверхности. Токсические свойства углеводородов, определяющих состав нефтепродуктов, не могут проявиться при потреблении питьевой воды, поскольку токсические концентрации гораздо выше, чем концентрации, при которых человек отказывается от потребления такой воды. Однако практическое значение этого показателя остаётся весомым, так как обычные приёмы водоподготовки не могут полностью устранить «керосиновый» запах воды, загрязнённой нефтепродуктами. Нормативное значение содержания нефтепродуктов в питьевой воде 0,1 мг/л.

Поверхностно-активные вещества (ПАВ), анионактивные - химические соединения, растворённые или диспергированные в жидкости, понижающие поверхностное натяжение воды. Нормативное значение содержания в питьевой воде этих веществ – 0,5 мг/л. Главное свойство этих соединений, поступающих со сточными водами - поверхностная активность – позволяет им мигрировать через горные породы, являющиеся водоупорами, что приводит к загрязнению ПАВ поземных горизонтов, считающихся надёжно защищёнными. Будучи сами мало токсичными, ПАВ при поступлении в организм способствуют проникновению через биологические мембраны малорастворимых, высокотоксичных либо канцерогенных соединений. Однако ведущий признак неблагоприятного воздействия ПАВ на воду – это изменение органолептических свойств, в первую очередь пенообразование, придание воде привкуса. Наличие ПАВ в воде водного объекта приводит к интенсивному развитию микрофлоры, что изменяет способность водоёма к самоочищению.

Фенольный индекс – обобщённый показатель, включающий группу летучих алкилфенолов (фенолов, содержащих в молекуле метильные, этильные и др. группы), реагирующих с 4-аминоантипирином. Фенолы влияют на органолептические показатели воды - придают воде специфический запах. Предельно допустимое значение фенольного индекса для питьевой воды – 0,25 мг/л.

1.7.3Бактериологические показатели качества питьевой воды

С водой могут передаваться возбудители холеры, брюшного тифа, сальмонеллезов (паратифов), дизентерии. Именно микробиологический состав является ведущим при оценке качества воды, используемой на предприятиях пищевой промышленности. Неизбежность соприкосновения воды с сырьём, готовыми продуктами и тарой диктует необходимость практически полного отсутствия в ней патогенных бактерий.

Таблица 2.2

Бактериологические показатели качества питьевой воды в соответствии с СанПиН 2.1.4.1074-01

Показатели

Единицы измерения

Нормативы

Термотолерантные колиформные бактерии

Число бактерий в 100 мл

Отсутствие

Общие колиформные бактерии

Число бактерий в 100 мл

Отсутствие

Общее микробное число

Число образующих колонии бактерий в 1 мл

Не более 50

Колифаги

Число бляшкообразующих единиц (БОЕ) в 100 мл

Отсутствие

Споры сульфитредуцирующих клостридий

Число спор в 20 мл

Отсутствие

Цисты лямблий

Число цист в 50 л

Отсутствие

1.7.4Радиоактивные вещества

Особым видом химического загрязнения питьевой воды является присутствие в ней радиоактивных веществ. Влияние природных радионуклидов, присутствующих в питьевой воде, на коллективную дозу облучения населения очень мало, лишь локально имеют место случаи и значительного облучения за счёт радона (одного из газообразных продуктов распада урана), содержащегося в некоторых месторождениях пресных подземных вод. Количество радионуклидов техногенного происхождения в питьевой воде обычно весьма ограничено благодаря проведению технологических циклов и постоянному контролю за источниками радионуклидов. Однако около 250 радиоактивных изотопов попадают в окружающую среду в результате работы ядерных установок. Эти радиоактивные частицы вместе с водой, пылью, пищей и воздухом попадают в организмы животных, людей, вызывая онкологические заболевания, врождённые уродства, снижение функций иммунной системы, и увеличивают общую заболеваемость населения. При попадании радиоактивных веществ в организм человека он подвергается внутреннему и внешнему облучению, различающемуся по своему воздействию: в первом случае доминирующая роль принадлежит - и -лучам, во втором -лучам. Установлена зависимость частоты возникновения злокачественных новообразований при совместном действии этих лучей от уровня облучения и распределения его фазы во времени.

Радиационная безопасность питьевой воды определяется её соответствием нормативам СанПиН 2.1.4.559-96 по показателям - и
-активности. Нормативные показатели - и -активности приведены в таблице 2.3.

    Таблица 2.3

Нормативные показатели - и -активности питьевой воды.

Показатели

Единицы
измерения

Нормативы

Показатель
вредности

Общая -активность

радиационный

Общая -активность

радиационный

1.7.5Химические вещества, поступающие и образующиеся в воде в процессе её обработки в системе водоснабжения

До 70-х годов предполагалось, что хлорирование воды не оказывает вредного воздействия на здоровье человека. Однако, впоследствии было установлено, что при этой технологии обеззараживания 90 % хлора участвует в реакции окисления органики, а 10 % образуют галогеносодержащие соединения (ГСС), предшественником которых являются гуминовые кислоты, фульвокислоты, таннины, метаболиты водорослей и т.д. – всего около 80 веществ. ГСС обладают высокой биологической активностью; их воздействие проявляется позднее в образовании злокачественных опухолей, генетических заболеваниях и т.п. Приоритетными хлорорганичесими загрязнителями питьевой воды являются: хлороформ, четырёххлористый углерод, 1,2-дихлорэтан, трихлорэтилен, тетрахлорэтилен и др. Наибольшая концентрация отмечается у хлороформа, в 5-30 раз превышающая содержание всех остальных ГСС.

Включение в технологическую схему обработки воды – озонирования для её обеззараживания позволяет использовать хлор (1,2 мг/л) только на последнем этапе водоочистки для предотвращения вторичного микробного загрязнения. Озон является более эффективным окислителем, чем хлор. Он уничтожает не только бактерии, но и вирусы, кроме того, устраняет запахи и обесцвечивает воду. При озонировании воды на 75 % снижается количество хлороформа и других канцерогенных хлорорганических соединений. При этом риск онкозаболеваний населения снижается до минимального уровня. Но в тоже время, одной из наиболее серьёзных проблем, при использовании озона в технологии очистки, является образование побочных продуктов окисления. Продуктами реакции озона с содержащимися в воде органическими веществами являются кетоны, альдегиды, карбоновые кислоты. Чаще всего в озонированной воде обнаруживаются такие соединения, как формальдегид, ацетальдегид, глиоксаль и метилглиоксаль.

В таблице 2.4 представлены нормируемые показатели вредных химических веществ по СанПиН 2.1.4.1074-01, поступающих и образующихся в воде в процессе её обработки в системе водоснабжения.

    Таблица 2.4

Нормативные значения вредных химических веществ по
СанПиН 2.1.4.1074-01, поступающих и образующихся в воде
в процессе её обработки в системе водоснабжения

Показатели

Единицы измерения

Нормативы (ПДК),

Показатель вредности

Класс опасности

Хлор остаточный свободный Хлор остаточный связанный

В пределах

Органолеп.

В пределах

Органолеп.

Хлороформ (при хлорировании воды)

Санит-токсик.

Озон остаточный

Органолеп.

Формальдегид (при озонировании воды)

Санит-токсик.

Полиакриламид

Санит-токсик.

Активированная кремникислота (по Si)

Санит-токсик.

Полифосфаты (по PO 4 3-)

Органолеп.

Остаточные количества алюминий содержащих коагулянтов

Санит-токсик.

Остаточные количества железо содержащих коагулянтов

Органолеп.

1.8Основные показатели для воды промышленного назначения

Нет ни одного промышленного производства, в работе которого не использовалась бы вода. Например, в полупроводниковой промышленности требуется особо чистая вода, которую готовят по специальным технологиям.

Отдельные производства пищевой промышленности помимо регламентации СанПиН 2.1.4.1074-01 предъявляют к воде дополнительные требования. Так в воде, используемой в пивоварении, должны отсутствовать сульфаты, а содержание железа не должно превышать 0,1 мг/л; в воде для сахарного производства должно быть минимальное солесодержание. И т.д.

Вода широко используется для охлаждения технологического оборудования – металлургических печей, двигателей внутреннего сгорания, компрессоров, конденсаторов паровых турбин, химической аппаратуры. Охлаждение осуществляется для создания оптимальных условий при протекании некоторых производственных процессов (охлаждение пара в конденсаторах паровых турбин, газов, жидкостей и твёрдых веществ в конденсаторах, охладителях, реакторах). Передача тепла происходит либо через стенку, либо путём непосредственного соприкосновения (конденсаторы смещения, оросительные скрубберы и пр.). Температуры нагрева воды здесь в большинстве случаев относительно низкие (в пределах 50-60С), закипание воды исключено.

1.8.1Требования к свойствам и качеству охлаждающей воды.

Цель охлаждения агрегатов – защита стенок и других его частей от перегрева, который может нарушить их прочность и вызвать разрушение. Охлаждение осуществляется прямотоком, водой подаваемой из источника и сбрасываемой после однократного её использования ниже водозабора или с её возвратом в производство. При этом нагретая вода предварительно охлаждается до исходной температуры. Для обеспечения наибольшего эффекта вода должна обладать, возможно, более низкой температурой и не должна давать отложений в трубах и камерах, по которым она проходит. Отложения затрудняют теплопередачу и уменьшают сечение труб, снижая интенсивность циркуляции воды, а, следовательно, и интенсивность охлаждения.

В воде для охлаждения не должны находиться крупные неорганические взвеси (песок), способные оседать в пазухах холодильников, печей и конденсаторов. Более мелкая взвесь (ил, глина), как правило, в трубах и камерах не осаждается, но, захватываясь образующейся в них накипью, нарушает условия теплообмена.

Наличие микроорганизмов в воде, поступающей для охлаждения, является также вредным фактором. В случае использования воды, богатой органическими веществами, для прямоточного охлаждения, при температуре стенок 30 – 40С на них развиваются биологические обрастания, состоящие из бактерий, грибков, водорослей.

При прямоточной системе охлаждения отложение накипи, состоящей в основном из карбоната кальция, наблюдается относительно редко. При оборотной системе охлаждения опасность накипеобразования возрастает, в связи с потерей углекислоты – углекислотное равновесие сдвигается вправо:

Малорастворимый карбонат кальция выпадает на стенках труб, по которым циркулирует охлаждающая вода.

Вода для охлаждения должна быть коррозионно-неактивной. Соединения железа и сероводорода усиливают коррозию железа в воде и вызывают образование обрастания на внутренних поверхностях труб. Поэтому содержание железа в ней не должно превышать 0,1 мг/л, сероводорода – 0,5 мг/л.

1.8.2Требования к воде для паросилового хозяйства

Вода для паросилового хозяйства не должна содержать примесей, которые могут вызвать отложение накипи, вспенивание котловой воды, унос солей с паром и коррозию металла. В процессе образования накипи снижается теплопроводность, а следовательно, ухудшается теплопередача, расходуется лишнее топливо, повышается температура металла (перегрев), в результате чего появляется вздутия и разрывы на наиболее теплонапряженных элементах.

Накипь появляется в результате термического распада бикарбонатов, увеличения концентрации других растворённых в воде солей, вследствие непрерывного выпаривания, приводящего к выпадению их из раствора и отложению на стенках котла. Причиной образования отложений является присутствие в природной воде различных растворимых солей, а также взвешенных механических примесей – песка, глины, водорослей. Особенно вредно присутствие гидрокарбоната кальция, который при нагревании воды до 50-60С распадается с образованием карбоната кальция, выделяющегося в виде твёрдой фазы на стенках аппаратуры.

Структура накипи и её химический состав зависят от условий, при которых она образуется, а также от химического свойств питательной воды. Образование накипи происходит в несколько стадий. Вначале по достижению предела растворимости вследствие выпаривания или протекания химических реакций в однородном растворе появляются зародыши кристаллов, постепенное укрупнение которых и создаёт плотную накипь или рыхлый шлам.

Из солей, образующих накипь, наиболее вредны те, растворимость которых с повышением температуры уменьшается, т.е. соли, с отрицательным термическим коэффициентом растворимости (СaSO 4 , CaSiO 3 , MgSiO 3 , CaCO 3). Эти соли осаждаются на стенках паровых котлов, образуя котельный камень, отлагающийся на наиболее нагретых поверхностях.

Соли с положительными термическими коэффициентами растворимости (Na 2 SO 4 , NaCl, Na 3 PO 4 , Na 2 CO 3) выпадают только из сильно концентрированных пересыщенных растворов, образуя накипь в виде рыхлого шлама, которая отлагается преимущественно на более холодных поверхностях. Однако присутствие этих солей уменьшает растворимость соответствующих солей кальция и магния, увеличивая тем самым вероятность образования накипи.

Вспенивание котловой воды, приводящее к загрязнению пара и отложению увлечённых им примесей на лопатках турбины, нежелательно. Образование стойкой пены вызывается наличием в воде щелочей, фосфатов, смазочных масел и нефти. Особенно устойчивы пены в присутствии поверхностно-активных веществ.

Щелочи переводят грубодисперсные вещества в коллоидное состояние, усиливая тем самым опасность загрязнения пара. Однако для предотвращения коррозии металла котловая вода должна обладать некоторой щёлочностью, так как присутствие щёлочи в воде значительно уменьшает растворимость железа. Вследствие этого Fe(OH) 2 , переходящая в котловую воду в результате коррозии, быстро выделяется из раствора и оседает на поверхности металла, образуя плотную защитную плёнку. Рекомендуется поддерживать содержание щёлочи в котловой воде в пределах 25-40мг/л NaOH.

Фосфаты способствуют вспениванию, хлориды и сульфаты, коагулируя коллоидные частички, значительно уменьшают вспенивание. Вода для охлаждения не должна содержать сероводорода. Особенно нежелательно

присутствие в питательной воде котлов высокого давления кремневой кислоты SiO 2 , способной создавать плотные накипи с очень низкой теплопроводностью.

Документ

Болотина И.О., Евтушенко Г.С., Солдатов А.И., Цехановский С.А. Определение местоположения источников сигналов акустической эмиссии с помощью фазированной антенной решётки

  • Отчет томского политехнического университета по результатам реализации программы развития государственного образовательного учреждения высшего профессионального образования

    Публичный отчет

    8.5. Информация о достигнутых результатах, социально-экономических эффектах и рисках, а также условиях сохранения и развития достигнутых результатов. 77

  • Программы вступительных испытаний*, проводимых Кубгу самостоятельно Программы вступительных испытаний на направления подготовки магистратуры Программа вступительного испытания (собеседование/устный экзамен) по дисциплинам «Математический анализ»

    Программа

    Программа вступительного испытания (собеседование/устный экзамен) по дисциплинам «Математический анализ», «Теория функций комплексного переменного» и «Функциональный анализ»

  • Программа XVI международная научно практическая конференция студентов

    Программа

    УПРАВЛЕНИЕ ТИРИСТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ СИСТЕМЫ САМОВОЗБУЖДЕНИЯ СИНХРОННОГО ГЕНЕРАТОРА В РЕЖИМЕ ФОРСИРОВКИ КАК СРЕДСТВО ПОВЫШЕНИЯ НАДЕЖНОСТИ РАБОТЫ ЭНЕРГОСИСТЕМЫ

  • Факторы, определяющие химический состав воды,– химические вещества, которые условно можно разделить на:

    1) биоэлементы (йод, фтор, цинк, медь, кобальт);

    2) химические элементы, вредные для здоровья (свинец, ртуть, селен, мышьяк, нитраты , уран, СПАВ, ядохимикаты, радиоактивные вещества, канцерогенные вещества);

    3) индифферентные или даже полезные химические вещества (кальций, магний, марганец, железо, карбонаты, бикарбонаты, хлориды).

    Химический состав воды – это возможная причина заболеваний неинфекционной природы. Основы нормирования показателей безвредности химического состава питьевых вод разберем далее.

    Индифферентные химические вещества в воде

    Железо двух– или трехвалентное содержится во всех естественных водоисточниках. Железо – необходимая составная часть животных организмов. Оно используется для построения жизненно важных дыхательных и окислительных ферментов (гемоглобина, каталазы). Взрослый человек получает в сутки десятки милиграммов железа, поэтому количество поступающего с водой железа не имеет существенного физиологического значения. Однако присутствие железа в виде больших концентраций нежелательно по эстетическим и бытовым соображениям. Железо придает воде мутность, желто-бурую окраску, горьковато-металлический привкус, оставляет пятна ржавчины. Большое количество железа в воде способствует развитию железобактерий, при отмирании которых внутри труб накапливается плотный осадок. В подземных водах чаще находят двухвалентное железо. Если воду качают, то, соединяясь на поверхности с кислородом воздуха, железо переходит в трехвалентное, и вода приобретает бурый цвет. Таким образом, содержание железа в питьевой воде лимитируется влиянием на мутность и цветность. Допустимой концентрацией по стандарту является не более 0,3 мг/л, для не более 1,0 мг/л.

    Марганец в подземных водах содержится в виде бикарбонатов, хорошо растворимых в воде. В присутствии кислорода воздуха превращается в гидроокись марганца и выпадает в осадок, чем усиливает показатель цветности и мутности воды. В практике централизованного водоснабжения необходимость ограничения содержания марганца в питьевой воде связывается с ухудшением органолептических свойств . Нормируется не более 0,1 мг/л.

    Алюминий содержится в питьевой воде, подвергшейся обработке – осветлению в процессе коагуляции сернокислым алюминием. Избыточные концентрации алюминия придают воде неприятный, вяжущий привкус. Остаточное содержание алюминия в питьевой воде (не более 0,2 мг на л) не вызывает ухудшения органолептических свойств воды (по мутности и привкусу).

    Кальций и его соли обуславливают жесткость воды. Жесткость питьевой воды является существенным критерием, по которому население оценивает качество воды. В жесткой воде овощи и мясо плохо развариваются, так как соли кальция и белки пищевых продуктов образуют нерастворимые соединения, которые плохо усваиваются. Затруднена стирка белья, в нагревательных приборах образуется накипь (нерастворимый осадок). Экспериментальные исследования показали, что при питьевой воде с жесткостью 20 мг. экв/л частота и вес образования камней были значительно больше, чем при употреблении воды с жесткостью 10 мг. экв/л. Влияние воды с жесткостью 7 мг. экв на л на развитие уролитиаза не было обнаружено. Все это позволяет считать обоснованным принятый норматив жесткости в питьевой воде – 7 мг экв на л.

    Биоэлементы

    Медь в малых концентрациях встречается в природных подземных водах и является истинным биомикроэлементом. Потребность в ней (в основном для кроветворения) взрослого человека невелика – 2-3 г в сутки. Она покрывается в основном суточным пищевым рационом . В больших концентрациях (3-5 мг/л) медь оказывает влияние на вкус (вяжущий). Норматив по этому признаку не более 1 мг/л. в воде.

    Цинк в качестве микроэлемента встречается в природных поземных водах. В больших концентрациях он встречается в водоемах, загрязненных промышленными сточными водами. Хронические отравления цинком неизвестны. Соли цинка в больших концентрациях действуют раздражительно на ЖКТ, но значение соединений цинка в воде определяется их влиянием на органолептические свойства. При 30 мг/л вода приобретает молочный цвет, а неприятный металлический вкус исчезает при 3 мг/л, поэтому нормируют содержание цинка в воде не более 3 мг/л.

    Химический состав воды как причина заболеваний неинфекционной природы

    Развитие медицинской науки позволило расширить представления об особенностях химического (солевого и микроэлементного) состава воды, его биологической роли и возможного вредного влияния на здоровье населения.

    Минеральные соли (макро– и микроэлементы) принимают участие в минеральном обмене и жизнедеятельности организма, влияют на рост и развитие тела, кроветворение, размножение, входят в состав ферментов, гормонов и витаминов. В организме человека обнаружены йод, фтор, медь, цинк, бром, марганец, алюминий, хром, никель, кобальт, свинец, ртуть и др.

    В природе постоянно происходит рассеивание микроэлементов (за счет метеофакторов, воды, жизнедеятельности организмов). Это приводит к их неравномерному распределению (недостатку или избытку) в почве и воде различных географических регионов, что ведет к изменению флоры и фауны и появлению биогеохимических провинций.

    Из заболеваний, связанных с неблагоприятным химическим составом воды, прежде всего выделяют эндемический зоб. Данное заболевание широко распространено и на территории Российской Федерации. Причинами заболевания являются абсолютная недостаточность йода во внешней среде и социально-гигиенические условия жизни населения. Суточная потребность в йоде составляет 120-125 мкг. В местностях, для которых не характерно данное заболевание, поступление йода в организм происходит из растительной пищи (70 мкг йода), из животной пищи (40 мкг), из воздуха (5 мкг) и из воды (5 мкг). Йоду в питьевой воде принадлежит роль индикатора общего уровня содержания этого элемента во внешней среде. Зоб распространен в сельских районах, где население питается исключительно пищевыми продуктами местного происхождения, и в почве йода мало. Жители Москвы и Питера используют воду тоже с низким содержанием йода (2 мкг), но эпидемий здесь нет, так как население питается привозными продуктами из других областей, что обеспечивает благоприятный баланс йода.

    Основными профилактическими мероприятиями в отношении эндемического зоба являются сбалансированное питание, йодирование соли, добавление меди, марганца, кобальта, йода в рацион. Должна также преобладать углеводистая пища и растительные белки, так как они нормализуют функцию щитовидной железы.

    Эндемический флюороз – заболевание, появляющееся у коренного населения определенных районов России, Украины и других, ранним симптомом которого является поражение зубов в виде пятнистости эмали. Общепринято, что пятнистость не является следствием местного действия фтора. Фтор, попадая в кровь, оказывает общетаксическое действие, в первую очередь вызывает деструкцию дентина.

    Питьевая вода – основной источник поступления фтора в организм, чем и определяется решающее значение фтора питьевой воды в развитии эндемического флюороза. Суточный пищевой рацион дает 0,8 мг фтора, а содержание фтора в питьевой воде нередко составляет 2-3 мг/л. Имеется четкая связь между тяжестью поражения эмали и количеством фтора в питьевой воды. Определенное значение для развития флюороза имеют перенесенная инфекция, недостаточное содержание в рационе молока и овощей. Заболевание определяется и социально-культурными условиями жизни населения. Впервые это заболевание было зарегистрировано в Индии, но у англичан и местной аристократии флюороз встречался редко, хотя содержание фтора в воде было на уровне 2-3 мг/л. У индийцев, влачивших полуголодное существование, пятнистость эмали выявлялась уже в тех местностях, где содержание фтора было даже 1,5 мг на 1 л.

    Профилактическими мероприятиями в отношении действия фтора можно считать:

    1) употребление воды с повышенным содержанием минеральных солей;

    2) употребление пищи и жидкости с повышенным содержанием кальция (овощи и молочные продукты), так как кальций связывает фтор и переводит его в нерастворимый комплекс Са + F = СаF2;

    4) ультрафиолетовое облучение;

    5) дефторирование воды.

    Флюороз – общее заболевание всего организма, хотя отчетливее всего оно проявляется в поражении зубов. Однако при флюорозе отмечаются:

    1) нарушение (торможение) фосфорно-кальциевого обмена;

    2) нарушение (торможение) действия внутриклеточных энзимов (фосфотаз);

    3) нарушение иммунобиологической активности организма.

    Выделяют следующие стадии флюороза:

    1 – появление меловидных пятен;

    2 – появление пигментных пятен;

    3 и 4 – появление дефектов и эрозий эмали (деструкция дентина).

    Содержание фтора в воде нормируется стандартом, так как вредна вода и с малым – 0,5-0,7 мг/л – содержанием фтора, так как развивается кариес зубов. Нормирование проводят по климатическим районам, в зависимости от уровня водопотребления. В 1-2-ом районе – 1,5 мг/л, в 3-м – 1,2 мг/л, в 4-м – 0,7 мг/л. Кариесом поражено 80-90 % всего населения. Это потенциальный источник инфекции и интоксикации. Кариес приводит к нарушению пищеварения и хроническим заболеваниям желудка, сердца и суставов. Убедительным доказательством антикариесного действия фтора является практика фторирования воды . При содержании фтора, равном 1,5 мг/л, заболеваемость кариесом наименьшая. В Норильске после 7 лет фторирования воды у детей 7-летнего возраста заболеваемость кариесом была на 43 % меньше. У лиц, которые употребляют фторированную воду в течение всей жизни, заболеваемость кариесом меньше на 60-70 %. На острове Новая Гвинея люди не знают кариеса, так как содержание фтора в питьевой воде оптимально.

    Ряд химических веществ вызывают микрохимические загрязнения, или водные интоксикации

    Так, выделяют группу атерогенных элементов(это медь, кадмий, свинец), избыток которых оказывает неблагоприятное влияние на сердечно-сосудистую систему.

    Более того, свинец у детей проникает через гематоэнцефалические барьеры, вызывая поражение мозга. Свинец вытесняет кальций из костной ткани.

    Ртуть вызывает болезнь Минамата (выраженное эмбриотоксическое действие).

    Кадмий вызывает болезнь Итай-Итай (нарушение обмена липидов).

    Металлы, опасные по эмбриотоксическому действию образуют, гонадотоксический ряд, который выглядит так: ртуть – кадмий – таллий – серебро – барий -хром – никель – цинк.

    Мышьяк обладает выраженной способностью к кумуляции в организме, его хроническое действие связано с воздействием на периферическую нервную систему и развитием полиневритов.

    Бор обладает выраженным гонадотоксическим действием. Нарушает сексуальную активность мужчин и овариально-менструальный цикл у женщин. Бором богаты природные подземные воды Западной Сибири.

    Ряд синтетических материалов, используемый в водоснабжении, способен вызвать возникновение интоксикации. Это прежде всего синтетические трубы, полиэтилен, фенолформальдегиды, коагулянты и флокулянты (ПАА), смолы и мембраны, используемые в опреснении. Опасны для здоровья попадающие в воду ядохимикаты, канцерогенные вещества, нитрозамины.

    СПАВ (синтетические поверхностно-активные вещества) стабильны в воде и слаботоксичны, но обладают аллергенным действием, а также способствуют лучшему усвоению канцерогенных веществ и ядохимикатов.

    При пользовании водой, содержащей повышенные концентрации нитратов, дети раннего грудного возраста заболевают водно-нитратной метгемоглобинемией. Легкая форма заболевания может быть и у взрослых. Это заболевание характеризуется расстройством пищеварения у детей (диспепсии), уменьшением кислотности желудочного сока. В связи с этим в верхних отделах кишечника нитраты восстанавливаются до нитритов NO2. Нитраты поступают в питьевую воду из-за широкой химизации сельского хозяйства, использования азотистых удобрений . У детей рН желудочного сока = 3, что способствует восстановлению нитратов в нитриты и образованию метгемоглобина. К тому же у детей отсутствуют ферменты, восстанавливающие метгемоглобин в гемоглобин. Очень опасно поступление нитратов с детскими смесями, приготовленными на загрязненной воде.

    Солевой состав – фактор постоянно и длительно воздействующий на здоровье населения. Это фактор малой интенсивности. Отмечено влияние хлоридных, хлоридно-сульфатных и гидрокарбонатных типов вод на:

    1) водно-солевой обмен;

    2) пуриновый обмен;

    3) снижение секреторной и увеличение моторной деятельности органов пищеварения;

    4) мочевыделение;

    5) кроветворение;

    6) сердечно-сосудистые заболевания (гипертоническую болезнь и атеросклероз).

    Повышенный солевой состав воды

    сказывается на неудовлетворительных органолептических свойств, что приводит к снижению «водного аппетита» и ограничению ее потребления.

    Повышенная жесткость (15-20 мг. экв/л) один из факторов развития мочекаменной болезни; и ведёт к развитию эндемического уролитиаза;

    Затруднено использование воды повышенной жесткости для хозяйственных, бытовых целей, полива;

    При длительном употреблении высокоминерализованных хлоридных вод отмечается повышенная гидрофобность тканей, способность их удерживать воду, напряжение гипофиз-адреналовой системы;

    Использование воды хлоридного класса с уровнем общей минерализации более 1 г/л вызывает гипертензивные состояния.!

    Влияние воды с низкой минерализацией (опресненная, дистиллированная) вызывает:

    1) нарушение водно-солевого обмена (снижение обмена хлора в тканях);

    2) изменение функционального состояния гипофиз-адреналовой системы, напряжение защитно-приспособительных реакций;

    3) отставание прироста и привеса тела. Минимальный допустимый уровень общей минерализации опресненной воды должен быть не менее 100 мг/л.