Дисахарид состоящий из двух молекул глюкозы. Трегалоза - грибной сахар

Если белки считаются органическими соединениями, наиболее разнообразными по строению и функциям, то углеводы являются самыми распространенными в природе. С ними мы сталкиваемся повсеместно: сахар, крахмал, бумага, хлопчатобумажная ткань и много других веществ и материалов построены из дисахаридов и полисахаридов. Химические свойства этих соединений и их значение для жизни человека мы и рассмотрим в нашей статье.

Обмен углеводов в клетке

Сахароза является одним из важнейших дисахаридов, синтезируемых растениями, например, такими, как сахарный тростник или сахарная свекла. Соединение выполняет энергетическую функцию, так его расщепление приводит к выделению большого количества энергии. Гидролиз сахарозы происходит в клетках человеческого организма и приводит к образованию молекул глюкозы и фруктозы:

С 12 Н 22 О 11 + Н 2 О = С 6 Н 12 О 6 + С 6 Н 12 О 6

Главные факторы проведения гидролиза в лабораторных или промышленных условиях - это нагревание и избыток ионов водорода, выполняющих каталитическую функцию в реагирующей смеси. Остатки фруктозы и глюкозы в дисахариде представлены своей циклической формой и соединены между собой благодаря кислородному атому. Сахароза лишена свободных альдегидных групп, вот почему у нее не происходит реакция серебряного зеркала, и углевод не проявляет восстановительных свойств.

Это подтверждают приведенные выше уравнения реакций дисахаридов. Химические свойства веществ, а именно легли в основу классификации углеводов.

Виды углеводов

Вещества, не расщепляющиеся под действием воды, например, фруктоза, находящаяся в меде и большинстве фруктов, а также глюкоза - это моносахариды или монозы. Если в процессе гидролиза углевод разлагается на две молекулы простейших сахаров, он относится к дисахариду. К этому классу относятся сахароза и лактоза. В случае, если из одной макромолекулы органического вещества образуется множество моносахаридных остатков - говорят о полисахаридах. К ним относится хорошо известный растительный полимер - крахмал, накапливающийся в листьях, плодах и семенах растений в процессе фотосинтеза.

В панцире членистоногих и клетках грибов находится углевод, который, в отличие от ранее рассмотренных соединений, содержит не только атомы углерода, кислорода и водорода, но еще и азот. Интересное строение и особенности протекания реакций, отличающие ее от химических свойств дисахаридов, имеет гиалуроновая кислота, представляющая основу межклеточного вещества у животных и человека. линейного строения, являющийся, по сути, одной гигантской макромолекулой, содержащей до 50 000 моно мерных звеньев. Наибольшее ее количество находится в дерме, хрящах, стекловидном теле органа зрения. Животный крахмал - гликоген синтезируется в клетках животных и человека из остатков глюкозы и откладывается в виде запасного энергетического материала в клетках печени - гепатоцитах.

Химические свойства дисахаридов на примере лактозы

Молоко - первый и важнейший продукт питания для детенышей млекопитающих: животных и человека. Кроме молочного белка - казеина, жира, воды, минеральных солей и витаминов, оно содержит углевод - лактозу или молочный сахар. Ее молекулы состоят из остатков моносахаридов - глюкозы и галактозы, содержащих по шесть атомов углерода. В процессе переваривания молока в желудочно-кишечном тракте лактоза расщепляется до моносахаридов.

Они всасываются капиллярами ворсинок тонкого кишечника. Все химические свойства дисахаридов проходят с участием ферментов, например, лактазы, ускоряющей гидролиз молочного сахара. Снижение уровня этого вещества, связанное, как с генетической предрасположенностью, так и с индивидуальными особенностями (возрастом, спецификой питания), вызывает заболевание - гиполактазию.

Восстановительные свойства углеводов

Молекулы лактозы состоят из остатков галактозы и глюкозы, имеющих открытые углеродные цепи и свободные альдегидные комплексы. Присутствие функциональной группы обуславливает возможность проведения реакций восстановления, например, с водородом. В результате, комплекс атомов -CHO, входящий в состав глюкозы, восстанавливается до гидроксильной группы, и образуется шестиатомный спирт - сорбит. Происходящий процесс восстановления можно выразить уравнениями, и химические свойства дисахаридов, таким образом, будут иметь следующий вид:

СН 2 OH - (CHOH) 4 - COH + H 2 = (температура, катализатор Ni) => CH 2 OH -(CHOH) 4 -CH 2 OH

Они зависят от того, какие формы глюкозы входят в состав углевода: циклические или с открытым углеродным скелетом.

Важнейшие полисахариды и особенности их строения

Белый порошок, не растворяющийся в холодной воде, а в горячей, образующий клейстер - это крахмал. Наибольшее его содержание характерно для семян риса и кукурузы, клубней картофеля. Макромолекула вещества состоит из остатков циклической альфа-глюкозы. В кислой среде он реакции имеет следующий вид:

(C 6 H 10 O 5) n + nH 2 O - H 2 SO 4 → nC 6 H 12 O 6

Химические свойства дисахаридов и полисахаридов имеют черты сходства: все они способны к гидролизу.

Целлюлоза, входящая в состав древесины, содержит мономеры - остатки бета-глюкозы. Нагревание вещества с концентрированной нитратной кислотой приводит к образованию сложного эфира - три нитрата целлюлозы, применяемого в пиротехнике.

В нашей статье мы изучили особенности химических свойств дисахаридов и полисахаридов и рассмотрели их распространение в природе.

Так же, как и моносахариды , широкое распространение в природе имеют и дисахариды – всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар).

Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп.

В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С 12 H 22 O 11 .

Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р. Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии».

В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде.

Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром.

Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы. Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году.

Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение – полисахаридами .

Полисахариды – высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов.

В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы – важнейших представителей полисахаридов.

Структурное звено полимерных цепей этих полисахаридов, формула которых (С 6 H 10 O 5) n , – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С 6 H 10 O 5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации.

Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный.

При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание.
Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Одной из разновидностей органических соединений, необходимых для полноценного функционирования человеческого организма, являются углеводы.

Они разделяются на несколько типов согласно своему строению — моносахариды, дисахариды и полисахариды. Следует разобраться, для чего они нужны и каковы их химические и физические свойства.

Углеводами называют соединения, в составе которых находятся углерод, водород и кислород. Чаще всего они имеют природное происхождение, хотя некоторые создаются промышленным путем. Их роль в жизнедеятельности живых организмов огромна.

Основными их функциями называют следующие:

  1. Энергетическая . Эти соединения – главный источник энергии. Большая часть органов может полноценно работать за счет энергии, полученной при окислении глюкозы.
  2. Структурная . Углеводы необходимы для формирования почти всех клеток организма. Клетчатка играет роль опорного материала, а в костях и хрящевой ткани находятся углеводы сложного типа. Одним из компонентов клеточных мембран является гиалуроновая кислота. Также углеводистые соединения требуются в процессе выработки ферментов.
  3. Защитная . При функционировании организма осуществляется работа желез, выделяющих секреторные жидкости, нужные для защиты внутренних органов от патогенного воздействия. Значительная часть этих жидкостей представлена углеводами.
  4. Регуляторная . Эта функция проявляется во влиянии на человеческий организм глюкозы (поддерживает гомеостаз, контролирует осмотическое давление) и клетчатки (воздействует на желудочно-кишечную перистальтику).
  5. Особые функции . Они свойственны отдельным видам углеводов. К таким особым функциям относятся: участие в процессе передачи нервных импульсов, формирование разных групп крови и пр.

Исходя из того, что функции углеводов достаточно разнообразны, можно предположить, что эти соединения должны различаться по своему строению и особенностям.

Это действительно так, и основная классификация их включает в себя такие разновидности, как:

  1. . Они считаются наиболее простыми. Остальные типы углеводов вступают в процесс гидролиза и распадаются на более мелкие составляющие. У моносахаридов такой способности нет, они являются конечным продуктом.
  2. Дисахариды . В некоторых классификациях их относят к олигосахаридам. В их составе находится две молекулы моносахарида. Именно на них делится дисахарид при гидролизе.
  3. Олигосахариды . В составе этого соединения находится от 2 до 10 молекул моносахаридов.
  4. Полисахариды . Эти соединения являются самой крупной разновидностью. В их состав входит больше 10 молекул моносахаридов.

У каждого вида углеводов есть свои особенности. Нужно рассмотреть их, чтобы понять, как каждый из них влияет на человеческий организм и в чем его польза.

Эти соединения являются самой простой формой углеводов. В их составе находится одна молекула, поэтому в ходе гидролиза не происходит их деление на мелкие блоки. При объединении моносахаридов формируются дисахариды, олигосахариды и полисахариды.

Они отличаются твердым агрегатным состоянием и сладким вкусом. У них есть способность растворяться в воде. Также они могут растворяться в спиртах (реакция слабее, чем с водой). Моносахариды почти не реагируют на смешение с эфирами.

Чаще всего упоминают природные моносахариды. Некоторые из них люди потребляют вместе с продуктами питания. К ним относят глюкозу, фруктозу и галактозу.

  • шоколад;
  • фрукты;
  • некоторые виды вина;
  • сиропы и пр.

Основной функцией углеводов такого типа является энергетическая. Нельзя сказать, что организм не может без них обойтись, но у них есть свойства, важные для полноценной работы организма, например, участие в обменных процессах.

Моносахариды организм усваивает быстрее всего, что происходит в ЖКТ. Процесс усвоения сложных углеводов, в отличие от простых соединений, не так прост. Сначала сложные соединения должны разделиться до моносахаридов, лишь после этого они усваиваются.

Это один из распространенных видов моносахаридов. Он представляет собой белое кристаллическое вещество, которое формируется естественным путем – в ходе фотосинтеза либо при гидролизе. Формула соединения — С6Н12О6. Вещество хорошо растворимо в воде, обладает сладким вкусом.

Глюкоза обеспечивает клетки мышечной и мозговой тканей энергией. При попадании в организм вещество усваивается, попадает в кровь и распространяется по всему телу. Там происходит ее окисление с высвобождением энергии. Это основной источник энергетической подпитки для мозга.

При нехватке глюкозы в организме развивается гипогликемия, которая в первую очередь отражается на функционировании мозговых структур. Однако чрезмерное ее содержание в крови тоже опасно, поскольку ведет к развитию сахарного диабета. Также при употреблении большого количества глюкозы начинает увеличиваться масса тела.

Фруктоза

Она относится к числу моносахаридов и очень похожа на глюкозу. Отличается более медленными темпами усвоения. Это объясняется тем, что для усвоения необходимо, чтобы фруктоза сначала преобразовалась в глюкозу.

Поэтому данное соединение считается неопасным для диабетиков, поскольку его потребление не ведет к резкому изменению количества сахара в крови. Тем не менее при таком диагнозе осторожность все же необходима.

У фруктозы есть способность к быстрому преобразованию в жирные кислоты, что становится причиной развития ожирения. Также из-за этого соединения снижается чувствительность к инсулину, что вызывает диабет 2 типа.

Это вещество можно получить из ягод и фруктов, а еще – из меда. Обычно оно там находится в сочетании с глюкозой. Соединению тоже присущ белый цвет. Вкус сладкий, причем эта особенность проявляется интенсивнее, чем в случае с глюкозой.

Другие соединения

Существуют и другие моносахаридные соединения. Они могут быть природными и полуискусственными.

К природным относится галактоза. Она тоже содержится в пищевых продуктах, но не встречается в чистом виде. Галактоза является результатом гидролиза лактозы. Основным ее источником называют молоко.

Другими природными моносахаридами являются рибоза, дезоксирибоза и манноза.

Также есть разновидности таких углеводов, для получения которых используются промышленные технологии.

Эти вещества тоже находятся в продуктах питания и попадают в человеческий организм:

  • рамноза;
  • эритрулоза;
  • рибулоза;
  • D-ксилоза;
  • L-аллоза;
  • D-сорбоза и пр.

Каждое из этих соединений отличается своими особенностями и функциями.

Дисахариды и их применение

Следующий тип углеводных соединений – дисахариды. Они считаются сложными веществами. В результате гидролиза из них образуется две молекулы моносахаридов.

Этот тип углеводов отличается следующими особенностями:

  • твердость;
  • растворимость в воде;
  • слабая растворимость в концентрированных спиртах;
  • сладкий вкус;
  • цвет – от белого до коричневого.

Основные химические свойства дисахаридов заключаются в реакциях гидролиза (происходит разрыв гликозидных связей и образование моносахаридов) и конденсации (формируются полисахариды).

Встречается 2 типа таких соединений:

  1. Восстанавливающие . Их особенностью является наличие свободной полуацетальной гидроксильной группы. За счет нее у таких веществ присутствуют восстановительные свойства. К данной группе углеводов относятся целлобиоза, мальтоза и лактоза.
  2. Невосстанавливающие . У этих соединений нет возможности к восстановлению, поскольку у них отсутствует полуацетальная гидроксильная группа. Наиболее известными веществами этого типа являются сахароза и трегалоза.

Эти соединения широко распространены в природе. Они могут встречаться как в свободном виде, так и в составе других соединений. Дисахариды являются источником энергии, поскольку при гидролизе из них образуется глюкоза.

Лактоза очень важна для детей, поскольку является основным из компонентов детского питания. Еще одной функцией углеводов этого типа является структурная, поскольку они входят в состав целлюлозы, которая нужна для формирования растительных клеток.

Характеристика и особенности полисахаридов

Еще одной разновидностью углеводов являются полисахариды. Это наиболее сложный тип соединений. Состоят они из большого количества моносахаридов (основной их компонент — глюкоза). В ЖКТ полисахариды не усваиваются – предварительно осуществляется их расщепление.

Особенности этих веществ таковы:

  • нерастворимость (либо слабая растворимость) в воде;
  • цвет желтоватый (или окраска отсутствует);
  • у них нет запаха;
  • почти все они безвкусны (некоторые имеют сладковатый вкус).

К химическим свойствам этих веществ относится гидролиз, который осуществляется под влиянием катализаторов. Результатом реакции становится распад соединения на структурные элементы – моносахариды.

Еще одно свойство – образование производных. Полисахариды могут вступать в реакцию с кислотами.

Продукты, образующиеся в ходе этих процессов, очень разнообразны. Это ацетаты, сульфаты, сложные эфиры, фосфаты и пр.

Примеры полисахаридов:

  • крахмал;
  • целлюлоза;
  • гликоген;
  • хитин.

Образовательный видео-материал о функциях и классификации углеводов:

Эти вещества важны для полноценного функционирования организма целиком и клеток по отдельности. Они снабжают организм энергией, участвуют в образовании клеток, оберегают внутренние органы от повреждений и неблагоприятного воздействия. Также они играют роль запасных веществ, которые нужны животным и растениям на случай сложного периода.

Дисахариды вступают в большинство реакций, характерных для моносахаридов: образуют простые и сложные эфиры, гликозиды, производные по карбонильной группе. Восстанавливающие дисахариды окисляются до гликобионовых кислот. Гликозидная связь в дисахаридах расщепляется под действием водных растворов кислот и ферментов. В разбавленных растворах щелочей дисахариды устойчивы. Ферменты действуют селективно, расщепляя только?- или только?-гликозидную связь /6/.

Последовательность реакций - окисление, метилирование, гидролиз, позволяет установить строение дисахарида (рис.7).

Рис. 7

Окисление дает возможность определить, остаток какого моносахарида находится на восстанавливающем конце. Метилирование и гидролиз дают информацию о положении гликозидной связи и размерах цикла моносахаридных звеньев. Конфигурация гликозидной связи (??или?? может быть определена с помощью ферментативного гидролиза /1/.

Биологическая роль дисахаридов

Сахароза в желудочно-кишечном тракте распадается на глюкозу и фруктозу. Сахароза - наиболее распространенный сахар. Источники сахарозы: сахарная свекла (14-18%) и сахарный тростник (10-15%). Содержание сахарозы: в сахарном песке - 99,75%, в сахаре-рафинаде - 99,9%.

Сахароза обладает способностью превращаться в жир. Избыточное поступление этого углевода в пищевом рационе вызывает нарушение жирового и холестеринового обмена в организме человека, оказывает отрицательное воздействие на состояние и функцию кишечной микрофлоры, повышая удельный вес гнилостной микрофлоры, усиливая интенсивность гнилостных процессов в кишечнике, приводит к развитию метеоризма кишечника. Избыточное количество сахарозы в питании детей приводит к развитию кариеса зубов.

Лактоза - углевод животного происхождения. При гидролизе расщепляется на глюкозу и галактозу. Гидролиз протекает медленно, ограничивая процесс брожения, что имеет большое значение в питании детей грудного возраста. Поступление лактозы в организм способствует развитию молочнокислых бактерий, подавляющих развитие гнилостных микроорганизмов. Лактоза в наименьшей степени используется для жирообразования и при избытке не повышает содержание холестерина в крови. Источник лактозы: молоко и молочные продукты, в которых содержание этого дисахарида может достигать 4-6%.

Сахароза, лактоза и мальтоза - ценные пищевые и вкусовые вещества. Производством сахарозы занята сахарная промышленность.

Дисахарид целлобиоза имеет важное значение для жизни растений, так как она входит в состав целлюлозы /4/.

сахароза гликозидный химический дисахарид

Дисахариды

Классификация

1) по числу моносахаридных остатков:

· олигосахариды – содержат несколько моносахаридных остатков;

· высшие полисахариды – содержат множество моносахаридных остатков.

2) по строению моносахаридных остатков:

· гомополисахариды – состоят из остатков одного моносахарида;

· гетерополисахариды – состоят из остатков различных моносахаридов.

Дисахариды

Дисахариды – это соединения, состоящие из двух моносахаридных остатков, связанных гликозидной связью .

Гликозидная связь образуется взаимодействием двух гидроксильных групп. Если один из этих гидроксилов – гликозидный, а второй – спиртовый, то такой дисахарид называется восстанавливающим . Если оба гидроксила гликозидные, то такой дисахарид называется невосстанавливающим .

Восстанавливающие дисахариды

Мальтоза

Солодовый сахар. Образуется при гидролизе крахмала ферментами солода, а также амилазами, содержащимися в слюне и в соке поджелудочной железы (переваривание крахмала).

Молекула мальтозы состоит из двух остатков D-глюкопиранозы, соединенных α-(1→4)-гликозидной связью.

Мальтоза восстанавливает реактив Фелинга, её растворы мутаротируют:

Целлобиоза

Образуется при неполном гидролизе целлюдозы. В отличие от мальтозы целлобиоза не расщепляется ферментами ЖКТ, не переваривается и не усваивается организмом.

Молекула целлобиозы состоит из двух остатков D-глюкопиранозы, соединенных β-(1→4)-гликозидной связью.

Целлобиоза подобно мальтозе восстанавливает реактив Фелинга и её растворы мутаротируют:

Молочный сахар, содержится во всех видах молока в количестве до 4% (в женском молоке – 8%). Лактоза расщепляется лактазой – ферментом кишечного сока – и является питательным продуктом в особенности для грудных детей. В фармации лактоза применяется при изготовлении порошков и таблеток.

Лактоза – гетеродисахарид. Её молекула состоит из остатков D-галактопиранозы и D-глюкопиранозы, связанных β-(1→4)-гликозидной связью.

Невосстанавливающие дисахариды

Сахароза

Свекловичный, тростниковый сахар. Содержится в соках многих растений и плодов. Сахароза расщепляется сахаразой – ферментом кишечного сока – и является питательным продуктом.