Расчеты теплопотерь. Простой расчет теплопотерь зданий Как определить реальные теплопотери дома

Энергоэффективная реконструкция здания поможет сэкономить тепловую энергию и повысить комфортность жизни. Наибольший потенциал экономии заключается в хорошей теплоизоляции наружных стен и крыши. Самый простой способ оценить возможности эффективного ремонта – это потребление тепловой энергии. Если в год потребляется более 100 кВт ч электроэнергии (10 м³ природного газа) на квадратный метр отапливаемой площади, включая площадь стен, то энергосберегающий ремонт может быть выгодным.

Потери тепла через внешнюю оболочку

Основная концепция энергосберегающего здания – это сплошной слой теплоизоляции над нагретой поверхностью контура дома.

  1. Крыша. С толстым слоем теплоизоляции потери тепла через крышу можно уменьшить;

Важно! В деревянных конструкциях теплозащитное уплотнение крыши затруднено, так как древесина набухает и может повреждаться от большой влажности.

  1. Стены. Как и с крышей, потери тепла снижаются при применении специального покрытия. В случае внутренней теплоизоляции стен существует риск того, что конденсат будет собираться за изоляцией, если влажность в помещении слишком высокая;

  1. Пол или подвал. По практическим соображениям тепловая изоляция производится изнутри здания;
  2. Термические мосты. Тепловые мосты представляют собой нежелательные охлаждающие ребра (теплопроводники) снаружи здания. Например, бетонный пол, который одновременно является балконным полом. Многие тепловые мосты находятся в области почвы, парапетах, оконных и дверных рамах. Существуют также временные тепловые мосты, если детали стен закреплены металлическими элементами. Термомосты могут составлять значительную часть потерь тепла;
  3. Окна. За последние 15 лет теплоизоляция оконного стекла улучшилась в 3 раза. Сегодняшние окна обладают специальным отражающим слоем на стеклах, что уменьшает потери излучения, это одно,- и двухкамерные стеклопакеты;
  4. Вентиляция. Обычное здание имеет воздушные утечки, особенно в области окон, дверей и на крыше, что обеспечивает необходимый воздухообмен. Однако в холодное время года это вызывает значительные теплопотери дома от выходящего нагретого воздуха. Хорошие современные здания достаточно воздухонепроницаемы, и необходимо регулярно вентилировать помещения, открывая окна на несколько минут. Чтобы уменьшить потери тепла за счет вентиляции, все чаще устанавливаются комфортные вентиляционные системы. Этот вид теплопотерь оценивается в 10-40%.

Термографические съемки в здании с плохой изоляцией дают представление о том, как много тепла теряется. Это очень хороший инструмент для контроля качества ремонта или нового строительства.

Способы оценки теплопотерь дома

Существуют сложные методики расчетов, учитывающие различные физические процессы: конвекционный обмен, излучение, но они часто являются излишними. Обычно используются упрощенные формулы, а при необходимости можно добавить к полученному результату 1-5%. Ориентация здания учитывается в новых постройках, но солнечное излучение также не влияет значительно на расчет теплопотерь.

Важно! При применении формул для расчетов потерь тепловой энергии всегда учитывается время нахождения людей в том или ином помещении. Чем оно меньше, тем меньшие температурные показатели надо брать за основу.

  1. Усредненные величины. Самый приблизительный метод, не обладает достаточной точностью. Существуют таблицы, составленные для отдельных регионов с учетом климатических условий и средних параметров здания. Например, для конкретной местности указывается значение мощности в киловаттах, необходимое для нагрева 10 м² площади помещения с потолками высотой 3 м и одним окном. Если потолки ниже или выше, и в комнате 2 окна, показатели мощности корректируются. Этот метод совершенно не учитывает степень теплоизоляции дома и не даст экономии тепловой энергии;
  2. Расчет теплопотерь ограждающего контура здания. Суммируется площадь внешних стен за вычетом размеров площадей окон и дверей. Дополнительно находится площадь крыши с полом. Дальнейшие расчеты ведутся по формуле:

Q = S x ΔT/R, где:

  • S – найденная площадь;
  • ΔT – разность между внутренней и наружной температурами;
  • R – сопротивление передаче тепла.

Результат, полученный для стен, пола и крыши, объединяется. Затем добавляются вентиляционные потери.

Важно! Такой подсчет теплопотерь поможет определиться с мощностью котла для здания, но не позволит рассчитать покомнатное количество радиаторов.

  1. Расчет теплопотерь по комнатам. При использовании аналогичной формулы рассчитываются потери для всех комнат здания по отдельности. Затем находятся теплопотери на вентиляцию путем определения объема воздушной массы и примерного количества раз в день ее смены в помещении.

Важно! При расчете вентиляционных потерь нужно обязательно учитывать назначение помещения. Для кухни и ванной комнаты необходима усиленная вентиляция.

Пример расчета теплопотерь жилого дома

Применяется второй способ расчета, только для внешних конструкций дома. Через них уходит до 90 процентов тепловой энергии. Точные результаты важны, чтобы выбрать необходимый котел для отдачи эффективного тепла без излишнего нагрева помещений. Также это показатель экономической эффективности выбранных материалов для теплозащиты, показывающий, как быстро можно окупить затраты на их приобретение. Расчеты упрощенные, для здания без наличия многослойного теплоизоляционного слоя.

Дом обладает площадью 10 х 12 м и высотой 6 м. Стены толщиной в 2,5 кирпича (67 см), покрытые штукатуркой, слоем 3 см. В доме 10 окон 0,9 х 1 м и дверь 1 х 2 м.

Расчет сопротивления передаче тепла стен:

  1. R = n/λ, где:
  • n – толщина стен,
  • λ – удельная теплопроводность (Вт/(м °C).

Это значение ищется по таблице для своего материала.

  1. Для кирпича:

Rкир = 0,67/0,38 = 1,76 кв.м °C/Вт.

  1. Для штукатурного покрытия:

Rшт = 0,03/0,35 = 0,086 кв.м °C/Вт;

  1. Общая величина:

Rст = Rкир + Rшт = 1,76 + 0,086 = 1,846 кв.м °C/Вт;

Вычисление площади внешних стен:

  1. Общая площадь внешних стен:

S = (10 + 12) х 2 х 6 = 264 кв.м.

  1. Площадь окон и дверного проема:

S1 = ((0,9 х 1) х 10) + (1 х 2) = 11 кв.м.

  1. Скорректированная площадь стен:

S2 = S – S1 = 264 – 11 = 253 кв.м.

Тепловые потери для стен будут определяться:

Q = S x ΔT/R = 253 х 40/1,846 = 6810,22 Вт.

Важно! Значение ΔT взято произвольно. Для каждого региона в таблицах можно отыскать среднее значение этой величины.

На следующем этапе идентичным образом высчитываются теплопотери через фундамент, окна, крышу, дверь. При вычислении показателя тепловых потерь для фундамента берется меньшая разность температур. Затем надо просуммировать все полученные цифры и получить итоговую.

Чтобы определить возможный расход электроэнергии на отопление, можно представить эту цифру в кВт ч и рассчитать ее за отопительный сезон.

Если использовать только цифру для стен, получается:

  • за сутки:

6810,22 х 24 = 163,4 кВт ч;

  • за месяц:

163,4 х 30 = 4903,4 кВт ч;

  • за отопительный сезон 7 месяцев:

4903,4 х 7 =34 323,5 кВт ч.

Когда отопление газовое, определяется расход газа, исходя из его теплоты сгорания и коэффициента полезного действия котла.

Тепловые потери на вентиляцию

  1. Найти воздушный объем дома:

10 х 12 х 6 = 720 м³;

  1. Масса воздуха находится по формуле:

М = ρ х V, где ρ – плотность воздуха (берется из таблицы).

М = 1, 205 х 720 = 867,4 кг.

  1. Надо определить цифру, сколько раз сменяется воздух во всем доме за сутки (например, 6 раз), и высчитать теплопотери на вентиляцию:

Qв = nxΔT xmx С, где С – удельная теплоемкость для воздуха, n – число раз замены воздуха.

Qв = 6 х 40 х 867,4 х 1,005 = 209217 кДж;

  1. Теперь надо перевести в Квт ч. Так как в одном киловатт-часе 3600 килоджоулей, то 209217 кДж = 58,11 кВт ч

Некоторые методики расчета предлагают взять потери тепла на вентиляцию от 10 до 40 процентов общих теплопотерь, не высчитывая их по формулам.

Для облегчения расчетов теплопотерь дома есть калькуляторы онлайн, где можно вычислить результат для каждой комнаты или дома целиком. В предлагаемые поля просто вводятся свои данные.

Видео

Расчет отопления частного дома можно сделать самостоятельно, проведя некоторые замеры и подставив свои значения в нужные формулы. Расскажем, как это делается.

Вычисляем теплопотери дома

От расчета теплопотерь дома зависит несколько критических параметров системы отопления и в первую очередь – мощность котла.

Последовательность расчета следующая:

Вычисляем и записываем в столбик площадь окон, дверей, наружных стен, пола, перекрытия каждой комнаты. Напротив каждого значения записываем коэффициент , из которых построен наш дом.

Если вы не нашли нужный материал в , то посмотрите в расширенной версии таблицы, которая так и называется – коэффициенты теплопроводности материалов (скоро на нашем сайте). Далее, по ниже приведенной формуле вычисляем потери тепла каждого элемента конструкции нашего дома.

Q = S * ΔT / R,

где Q – потери тепла, Вт
S — площадь конструкции, м2
ΔT — разница температур внутри и снаружи помещения для самых холодных дней °C

R — значение теплосопротивления конструкции, м2·°C/Вт

R слоя = V / λ

где V — толщина слоя в м,

λ — коэффициент теплопроводности (см. таблицу по материалам).

Суммируем теплосопротивление всех слоев. Т.е. для стен учитывается и штукатурка и материал стен и наружное утепление (если есть).

Складываем все Q для окон, дверей, наружных стен, пола, перекрытия

К полученной сумме добавляем 10-40% вентиляционных потерь. Их тоже можно вычислить по формуле, но при хороших окнах и умеренном проветривании, смело можно ставить 10%.

Результат делим на общую площадь дома. Именно общую, т.к. косвенно тепло будет тратиться и на коридоры, где радиаторов нет. Вычисленная величина удельных теплопотерь может колебаться в пределах 50-150 Вт/м2. Самые высокие потери тепла у комнат верхних этажей, самые низкие у средних.

После окончания монтажных работ, проведите стен, потолков и других элементов конструкции, чтобы убедиться, что нигде нет утечек тепла.

Приведенная ниже таблица поможет точнее определиться с показателями материалов.

Определяемся с температурным режимом

Этот этап напрямую связан с выбором котла и способом отопления помещений. Если предполагается установка «теплых полов», возможно, лучшее решение – конденсационный котел и низкотемпературный режим 55С на подаче и 45С в «обратке». Такой режим обеспечивает максимальный кпд котла и соответственно, наилучшую экономию газа. В будущем, при желании использовать высокотехнологичные способы обогрева, ( , солнечные коллекторы) не придется переделывать систему отопления под новое оборудование, т.к. оно рассчитано именно на низкотемпературные режимы. Дополнительные плюсы – не пересушивается воздух в помещении, интенсивность потоков ниже, меньше собирается пыли.

В случае выбора традиционного котла, температурный режим лучше выбрать максимально приближенным к европейским нормам 75С – на выходе из котла, 65С – обратная подача, 20С — температура помещения. Такой режим предусмотрен в настройках почти всех импортных котлов. Кроме выбора котла, температурный режим влияет на расчет мощности радиаторов.

Подбор мощности радиаторов

Для расчета радиаторов отопления частного дома материал изделия не играет роли. Это дело вкуса хозяина дома. Важна только указанная в паспорте изделия мощность радиатора. Часто производители указывают завышенные показатели, поэтому результат вычислений будем округлять в большую сторону. Расчет производится для каждой комнаты отдельно. Несколько упрощая расчеты для помещения с потолками 2,7 м, приведем простую формулу:

K=S * 100 / P

Где К — искомое количество секций радиатора

S – площадь комнаты

P – мощность, указанная в паспорте изделия

Пример вычисления: Для комнаты площадью 30 м2 и мощности одной секции 180 Вт получаем: K= 30 х 100/180

K=16,67 округленно 17 секций

Тот же расчет можно применить для чугунных батарей, принимая что

1 ребро(60 см) = 1 секция.

Гидравлический расчет системы отопления

Смысл этого расчета – правильно выбрать диаметр труб и характеристики . Из-за сложности расчетных формул, для частного дома проще выбрать параметры труб по таблице.

Здесь приведена суммарная мощность радиаторов, для которых труба подает тепло.

Диаметр трубы Мин. мощность радиатора квт Макс. мощность радиатора квт
Металлопластиковая труба 16 мм 2,8 4,5
Металлопластиковая труба 20 мм 5 8
Металлопластиковая труба 25 мм 8 13
Металлопластиковая труба 32 мм 13 21
Полипропиленовая труба 20 мм 4 7
Полипропиленовая труба 25 мм 6 11
Полипропиленовая труба 32 мм 10 18
Полипропиленовая труба 40 мм 16 28

Вычисляем объем системы отопления

Эта величина необходима для подбора правильного объема расширительного бака. Вычисляется как сумма объема в радиаторах, трубопроводах и котле. Справочная информация по радиаторам и трубопроводам приведена ниже, по котлу – указана в его паспорте.

Объем теплоносителя в радиаторе:

  • алюминиевая секция - 0,450 литра
  • биметаллическая секция - 0,250 литра
  • новая чугунная секция - 1,000 литр
  • старая чугунная секция - 1,700 литра

Объем теплоносителя в 1 п.м. трубы:

  • ø15 (G ½») - 0,177 литра
  • ø20 (G ¾») - 0,310 литра
  • ø25 (G 1,0″) - 0,490 литра
  • ø32 (G 1¼») - 0,800 литра
  • ø15 (G 1½») - 1,250 литра
  • ø15 (G 2,0″) - 1,960 литра

Монтаж системы отопления частного дома — выбор труб

Выполняется трубами из разных материалов:

Стальные

  • Имеют большой вес.
  • Требуют должного навыка, специальных инструментов и оборудования для монтажа.
  • Подвержены коррозии
  • Могут накапливать статическое электричество.

Медные

  • Выдерживают температуру до 2000 С, давление до 200 атм. (в частном доме совершенно излишние достоинства)
  • Надежны и долговечны
  • Имеют высокую стоимость
  • Монтируются специальным оборудованием, серебряным припоем

Пластиковые

  • Антистатичны
  • Стойкие к коррозии
  • Недорогие
  • Обладают минимальным гидравлическим сопротивлением
  • Не требуют специальных навыков при монтаже

Подведем итог

Правильно сделанный расчёт системы отопления частного дома обеспечивает:

  • Комфортное тепло в помещениях.
  • Достаточное количество горячей воды.
  • Тишину в трубах (без бульканья и рычания).
  • Оптимальные режимы работы котла
  • Правильную нагрузку на циркуляционный насос.
  • Минимальные затраты на монтаж

Безусловно, основные очаги теплопотери в доме - двери и окна, но при просмотре картины через экран тепловизора легко увидеть, что это не единственные источники утечки. Тепло теряется и через неграмотно монтированную кровлю, холодный пол, не утепленные стены. Теплопотери дома сегодня рассчитываются при помощи специального калькулятора. Это позволяет подобрать оптимальный вариант отопления и провести дополнительные работы по утеплению строения. Интересно, что для каждого типа строений (из бруса, бревен, уровень теплопотерь будет разным. Поговорим об этом подробнее.

Основы расчета теплопотерь

Контроль над теплопотерями систематично проводится только для помещений, отапливающихся в соответствии с сезоном. Помещения, не предназначенные для сезонного проживания, не подпадают под категорию зданий, поддающихся тепловому анализу. Программа теплопотери дома в этом случае не будет иметь практического значения.

Чтобы провести полный анализ, рассчитать теплоизоляционные материалы и подобрать систему отопления с оптимальной мощностью, необходимо обладать знаниями о реальной теплопотере жилища. Стены, крыша, окна и пол - не единственные очаги утечки энергии из дома. Большая часть тепла уходит из помещения через неправильно монтированные вентиляционные системы.

Факторы, влияющие на теплопотери

Основными факторами, влияющими на уровень теплопотерь, являются:

  • Высокий уровень перепада температур между внутренним микроклиматом помещения и температурой на улице.
  • Характер теплоизоляционных свойств ограждающих конструкций, к которым относятся стены, перекрытия, окна и др.

Величины измерения теплопотери

Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м 2. Итак, разберемся с тем, как рассчитать теплопотери дома.

К основным величинам, необходимым для вычисления теплопотери дома, относятся:

  • q - величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м 2 барьерной конструкции. Измеряется в Вт/м 2 .
  • ∆T - разница между температурой в доме и на улице. Измеряется в градусах (о С).
  • R - сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
  • S - площадь здания или поверхности (используется по необходимости).

Формула расчета теплопотери

Программа теплопотери дома рассчитывается по специальной формуле:

Проводя расчет, помните, что для конструкций, состоящих из нескольких слоев, суммируется сопротивление каждого слоя. Итак, как рассчитать теплопотери каркасного дома, обложенного кирпичом снаружи? Сопротивление потере тепла будет равно сумме сопротивления кирпича и дерева с учетом воздушной прослойкой между слоями.

Важно! Обратите внимание, что расчет сопротивления проводится для самого холодного времени года, когда разница температур достигает своего пика. В справочниках и пособиях всегда указывается именно это опорное значение, использующееся для дальнейших расчетов.

Особенности расчета теплопотерь деревянного дома

Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:

  • Определяют через стены.
  • Рассчитывают через оконные конструкции.
  • Через дверные проемы.
  • Производят расчет через перекрытия.
  • Вычисляют теплопотери деревянного дома через напольное покрытие.
  • Складывают полученные ранее значения.
  • Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.

Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).

Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79.

Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.

Необходимость расчета теплопотерь

Обустройство комфортного жилища требует строгого контроля процесса на каждом из этапов выполнения работ. Поэтому организацию системы отопления, которой предшествует выбор самого метода обогрева помещения, нельзя упускать из виду. Работая над возведением дома, немало времени придется уделить не только проектной документации, но и расчету теплопотери дома. Если в дальнейшем вы собираетесь работать в области проектирования, то инженерные навыки расчета теплопотерь вам точно пригодятся. Так почему бы не потренироваться выполнять эту работу на опыте и сделать подробный расчет теплопотерь для собственного дома.

Важно! Выбор способа и мощности системы отопления напрямую зависит от проведенных вами расчетов. Вычислив показатель теплопотери неверно, вы рискуете мерзнуть в холодное время или изнемогать от жары из-за чрезмерного обогрева помещения. Необходимо не только правильно выбрать прибор, но и определить количество батарей или радиаторов, способное обогреть одну комнату.

Оценка теплопотери на расчетном примере

Если у вас нет необходимости изучать расчет теплопотери дома подробно, остановимся на оценочном разборе и определении потери тепла. Иногда в процессе расчетов возникают погрешности, поэтому лучше прибавлять минимальное значение к предполагаемой мощности отопительной системы. Для того чтобы приступить к расчетам, необходимо знать показатель сопротивления стен. Он отличается в зависимости от типа материала, из которого изготовлена постройка.

Сопротивление (R) для домов из керамического кирпича (при толщине кладки в два кирпича - 51 см) равно 0,73 °С·м²/Вт. Минимальный показатель толщины при таком значении должен составлять 138 см. При использовании в качестве базового материала керамзитбетона (при толщине стены 30 см) R составляет 0,58 °С·м²/Вт при минимальной толщине в 102 см. В деревянном доме или постройке из бруса с толщиной стен в 15 см и уровнем сопротивления 0,83 °С·м²/Вт требуется минимальная толщина в 36 см.

Стройматериалы и их сопротивление теплопередаче

Опираясь на эти параметры, можно с легкостью проводить расчеты. Найти значения сопротивлений вы можете в справочнике. В строительстве чаще всего используются кирпич, сруб из бруса или бревен, пенобетон, деревянный пол, потолочные перекрытия.

Значения сопротивления теплопередаче для:

  • кирпичной стены (толщ. 2 кирпича) - 0,4;
  • сруба из бруса (толщ. 200 мм) - 0,81;
  • сруба из бревна (диаметром 200 мм) - 0,45;
  • пенобетона (толщ. 300 мм) - 0,71;
  • деревянного пола - 1,86;
  • перекрытия потолка - 1,44.

Исходя из поданной выше информации, можно сделать вывод, что для правильного расчета теплопотерь потребуется всего две величины: показатель перепада температур и уровень сопротивления теплопередаче. Например, дом сделан из дерева (бревна) толщиной 200 мм. Тогда сопротивление равно 0,45 °С·м²/ Вт. Зная эти данные, можно вычислить процент теплопотери. Для этого проводят операцию деления: 50/0,45=111,11 Вт/м².

Расчет теплопотери по площади выполняется так: теплопотери умножаются на 100 (111,11*100=11111 Вт). С учетом расшифровки величины (1 Вт=3600) полученное число умножаем на 3600 Дж/час: 11111*3600=39,999 МДж/час. Проведя такие простые математические операции, любой хозяин может узнать о теплопотерях своего дома за час.

Расчет теплопотери помещения в онлайн-режиме

В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат - цифру, которая и будет означать количество выхода тепла из жилого помещения.

Жилое помещение - это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.

Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине. Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным. А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.

Расчет теплопотерь дома - основа отопительной системы . Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать - расскажем в этой статье.

Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения – нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

Самый простой рассчет теплопотерь

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

- тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 - удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S - площадь помещения;

K1 - коэффициент теплопотерь окон:

  • обычное остекление К1=1,27
  • двойной стеклопакет К1=1,0
  • тройной стеклопакет К1=0,85;

К2 - коэффициент теплопотерь стен:

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 - коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 - число стен, выходящих наружу:

  • одна - К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 - тип помещения, которое находится над расчитываемым:

  • холодный чердак К6=1,0
  • теплый чердак К6=0,9
  • отапливаемое помещение К6-0,8;

K7 - высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = (V x ∆t x k)/860; (кВт)

V - объем помещения (куб.м)
∆t - дельта температур (уличной и в помещении)
k - коэффициент рассеивания

  • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R .

q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT - разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С) . Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя :

δ - толщина слоя, м;

λ - расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C.). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр - тепло потери через ограждающие конструкции, Вт
Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр – площадь ограждающей конструкции, м;
n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад - в размере 0,1, на юго-восток и запад - в размере 0,05; в угловых помещениях дополнительно - по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 - в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях - 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) - в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н - для тройных дверей с двумя тамбурами между ними; 0,27 H - для двойных дверей с тамбурами между ними; 0,34 H - для двойных дверей без тамбура; 0,22 H - для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, - в размере 3 при отсутствии тамбура и в размере 1 - при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I - RI = 2,1 (м2 оС) / Вт;
  • зона II - RII = 4,3 (м2 оС) / Вт;
  • зона III - RIII = 8,6 (м2 оС) / Вт;
  • зона IV - RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п - сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с - толщина утепляющего слоя, м;
λу.с - коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Rл = 1,18 * Rу.п

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F (tвн – tнБ) (1 + Σ β) n / Rо

tнБ – темп-ра наружного воздуха, оС;
tвн – темп-ра в помещении, оС;
F – площадь защитного сооружения, м2;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочные, доли от основных;
– сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Rо = 1/ αв + Σ (δі / λі) + 1/ αн + Rв.п., где

αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв, Вт/ м2· о С

αн, Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Поверхность наружная стен, бесчердачных перекрытий

Перекрытия чердачные и перекрытия над подвалами неотапливаемыми со световыми проемами

Перекрытия над подвалами неотапливаемыми без световых проемов

Таблица 2. Сопротивление термическое замкнутых воздушных прослоек Rв.n, м2· о С / Вт

Толщина прослойки воздушной, мм

Горизонтальная и вертикальная прослойки при тепловом потоке снизу вверх

Прослойка горизонтальная при тепловом потоке сверху вниз

При температуре в пространстве воздушной прослойки

Для дверей и окон сопротивление теплопередаче рассчитывается очень редко, а чаще принимается в зависимости от их конструкции по справочным данным и СНиПам. Площади ограждений для расчетов определяются, как правило, согласно строительных чертежей. Температуру tвн для жилых зданий выбирают из приложения і, tнБ – из приложения 2 СНиП в зависимости от расположения строительного объекта. Добавочные теплопотери указаны в табл.3, коэф-ент n – в табл.4.

Таблица 3. Добавочные теплопотери

Ограждение, его тип

Условия

Добавочные теплопотери β

Окна, двери и н аружные вертикальные стены:

ориентация на северо-запад восток, север и северо-восток

запад и юго-восток

Наружные двери, двери с тамбурами 0,2 Н без воздушной завесы при высоте строения Н, м

двери тройные с двумя тамбурами

двери двойные с тамбуром

Угловые помещения дополнительно для окон, дверей и стен

одно из ограждений ориентировано на восток, север, северо-запад или северо-восток

другие случаи

Таблица 4. Величина коэффициента n, который учитывает положение ограждения (его наружной поверхности)

Расход тепла на нагревание наружного инфильтрующегося воздуха в общественных и жилых зданиях для всех типов помещений определяется двумя расчетами. Первый расчет определяет расход тепловой энергии Qі на нагревание наружного воздуха, который поступает в і-е помещение в результате действия естественной вытяжной вентиляции. Второй расчет определяет расход тепловой энергии Qі на подогревание наружного воздуха, который проникает в данное помещение сквозь неплотности ограждений в результате ветрового и (или) теплового давлений. Для расчета принимают наибольшую величину теплопотерь из определенных по следующим уравнениям (1) и (или) (2).

Qі = 0,28 L ρн с (tвн – tнБ) (1)

L, м3/ча с – расход удаляемого наружу из помещений воздуха, для жилых зданий принимают 3 м3/час на 1 м2 площади жилых помещений, в том числе и кухни;
с – удельная теплоемкость воздуха (1 кДж /(кг · оС));
ρн – плотность воздуха снаружи помещения, кг/м3.

Удельный вес воздуха γ, Н/м3, его плотность ρ, кг/м3, определяются согласно формул:

γ= 3463/ (273 +t) , ρ = γ / g , где g = 9,81 м/с2 , t , ° с– температура воздуха.

Расход теплоты на подогревание воздуха, который попадает в помещение через различные неплотности защитных сооружений (ограждений) в результате ветрового и теплового давлений, определяется согласно формулы:

Qі = 0,28 Gі с (tвн – tнБ) k, (2)

где k – коэф-ент, учитывающий встредчный тепловой поток, для раздельно-переплетных балконных дверей и окон принимается 0,8, для одинарных и парно-переплетных окон – 1,0;
Gі – расход воздуха, проникающего (инфильтрируещегося) через защитные сооружения (ограждающие конструкции), кг/ч.

Для балконных дверей и окон значение Gі определяется:

Gі = 0,216 Σ F Δ Рі 0,67 / Rи, кг/ч

где Δ Рі – разница давлений воздуха на внутренней Рвн и наружной Рн поверхностях дверей или окон, Па;
Σ F, м2 – расчетные площади всех ограждений здания;
Rи, м2· ч/кг – сопротивление воздухопроницанию даного ограждения, которое может приниматься согласно приложения 3 СНиП. В панельных зданиях, кроме этого определяется дополнительный расход воздуха, инфильтрующегося через неплотности стыков панелей.

Величина Δ Рі определяется из уравнения, Па:

Δ Рі= (H – hі) (γн – γвн) + 0,5 ρн V2 (се,n – се,р) k1 – ріnt,
где H, м – высота здания от нулевого уровня до устья вентшахты (в бесчердачных зданиях устье обычно располагается на 1 м выше крыши, а в зданиях, имеющих чердак - на 4–5м выше перекрытия чердака);
hі, м – высота от нулевого уровня до верха балконных дверей или окон, для которых проводится расчет расхода воздуха;
γн, γвн – веса удельные наружного и внутреннего воздуха;
се,рu се,n – аэродинамические коэф-ты для подветренной и наветренной поверхностей здания соответственно. Для прямоугольных зданий се,р = –0,6, се,n= 0,8;

V, м/с – скорость ветра, которую для расчета принимают согласно приложения 2;
k1 – коэффициент, который учитывает зависимость скоростного напора ветра и высоты здания;
ріnt, Па – условно-постоянное давление воздуха, которое возникает при работе вентиляции с принудительным побуждением, при расчете жилых зданий ріnt можно не учитывать, поскольку оно равно нолю.

Для ограждений высотой до 5,0м коэффициент k1равен 0,5, высотой до 10 м равен 0,65, при высоте до 20 м – 0,85, а для ограждений 20 м и выше принимается 1,1.

Общие расчетные теплопотери в помещении, Вт:

Qрасч = Σ Qогр + Quнф – Qбыт

где Σ Qогр – суммарные потери тепла через все защитные ограждения помещения;
Qинф – максимальный расход теплоты на нагревание воздуха, который инфильтрируется принятый из расчетов согласно формул (2) u (1);
Qбыт – все тепловыделения от бытовых электрических приборов, освещения, других возможных источников тепла, которые принимаются для кухонь и жилых помещений в размере 21 Вт на 1 м2 расчетной площади.

Владивосток -24.
Владимир -28.
Волгоград -25.
Вологда -31.
Воронеж -26.
Екатеринбург -35.
Иркутск -37.
Казань -32.
Калининград -18
Краснодар -19.
Красноярск -40.
Москва -28.
Мурманск -27.
Нижний Новгород -30.
Новгород -27.
Новороссийск -13.
Новосибирск -39.
Омск -37.
Оренбург -31.
Орел -26.
Пенза -29.
Пермь -35.
Псков -26.
Ростов -22.
Рязань -27.
Самара -30.
Санкт-Петербург -26.
Смоленск -26.
Тверь -29.
Тула -27.
Тюмень -37.
Ульяновск -31.

Условно теплопотери частного дома можно разделить на две группы:

  • Естественные — потери тепла через стены, окна или крышу здания. Это потери которые невозможно полностью устранить, но зато их можно свести к минимуму.
  • «Утечки тепла» — дополнительные теплопотери, которых чаще всего можно избежать. Это различные визуально незаметные ошибки: скрытые дефекты, ошибки монтажа и т.п., которые невозможно обнаружить визуально. Для этого используется тепловизор.

Далее предлагаем вашему вниманию 15 примеров таких «утечек». Это реальные проблемы, которые чаще всего встречаются в частных домах. Вы увидите какие проблемы могут присутствовать в вашем доме и на что следует обратить внимание.

Некачественная теплоизоляция стен

Изоляция работает не так эффективно, как могла бы. На термограмме видно, что температура на поверхности стены распределена неравномерно. То есть, одни участки стены нагреваются сильнее других (чем ярче цвет, тем выше температура). А это значит что и потери тепла в ни сильнее, что неправильно для утепленной стены.

В данном случае яркие области это пример неэффективной работы изоляции. Вероятно что пенопласт в этих места поврежден, некачественно смонтирован или отсутствует вовсе. Поэтому после утепления здания важно убедиться, что работы выполнены качественно и изоляция работает эффективно.

Некачественная теплоизоляция крыши

Стык между деревянной балкой и минеральной ватой недостаточно уплотнен. Из-за этого изоляция работает недостаточно эффективно и обеспечивает дополнительные потери тепла через крышу, которых можно было бы избежать.

Радиатор засорен и отдает мало тепла

Одна из причин почему в доме холодно — некоторые секции радиатора не нагреваются. Это может быть вызвано несколькими причинами: строительный мусор, скопление воздуха или заводской брак. Но результат один — радиатор работает в половину своей отопительной мощности и недостаточно греет помещение.

Радиатор «греет» улицу

Еще один пример неэффективной работы радиатора.

Внутри помещения установлен радиатор, который очень сильно нагревает стену. В результате часть выделяемого им тепла уходит на улицу. Фактически тепло используется для обогрева улицы.

Близкая укладка теплых полов к стене

Труба теплого пола уложена близко к наружной стене. Теплоноситель в системе охлаждается более интенсивно и его приходится подогревать чаще. Результат - увеличение затрат на отопление.

Приток холода через щели в окнах

Часто в окнах присутствуют щели, которые появляются из-за:

  • недостаточного прижатия окна к оконной раме;
  • износа уплотнительных резинок;
  • некачественного монтажа окна.

Через щели в помещение постоянно попадает холодный воздух, из-за которого образуются вредные для здоровья сквозняки и увеличиваются теплопотери здания.

Приток холода через щели в дверях

Также щели возникают в балконных и входных дверях.

Мостики холода

«Мостики холода» — это участки здания с более низким термическим сопротивлением по отношению к другим участкам. То есть они пропускают больше тепла. Например это углы, бетонные перемычки над окнами, места сопряжения строительных конструкций и так далее.

Чем вредны мостики холода:

  • Увеличивают теплопотери здания. Одни мостики теряют больше тепла, другие меньше. Все зависит от особенностей здания.
  • При определенных условиях в них выпадает конденсат и появляется грибок. Такие потенциально опасные участки нужно предупреждать и устранять заранее.

Охлаждение помещения через вентиляцию

Вентиляция работает «наоборот». Вместо удаления воздуха из помещения наружу, с улицы в помещение затягивается холодный уличный воздух. Это также, как и в примере с окнами обеспечивает сквозняки и охлаждает помещение. На приведенном примере температура воздуха, который попадает в помещение -2,5 градуса, при температуре помещения ~20-22 градуса.

Приток холода через люк на крышу

А в данном случае холод попадает в помещение через люк на чердак.

Приток холода через монтажное отверстие кондиционера

Приток холода в помещение через монтажное отверстие кондиционера.

Потери тепла через стены

На термограмме видны «мостики тепла», связанные с использованием при строительстве стены материалов с более слабым сопротивлением теплопередаче.

Потери тепла через фундамент

Часто утепляя стену здания забывают о еще важном участке — фундаменте. Через фундамент здания также осуществляются потери тепла, особенно если в здании есть подвальное помещение или внутри уложен теплый пол.

Холодная стена из-за кладочных швов

Кладочные швы между кирпичами являются многочисленными мостиками холода и увеличивают теплопотери через стены. На приведенном примере видно, что разница между минимальной температурой (кладочный шов) и максимальной (кирпич) составляет почти 2 градуса. Термическое сопротивление стены снижено.

Воздушные течи

Мостик холода и воздушная течь под потолком. Возникает из-за недостаточной герметизации и утепления стыков между кровлей, стеной и плитой перекрытия. В результате помещение дополнительно охлаждается и появляются сквозняки.

Заключение

Все это типичные ошибки, которые встречаются в большинстве частных домов. Многие из них легко устраняются и позволяют заметно улучшить энергетическое состояние здания.

Перечислим их еще раз:

  1. Утечки тепла через стены;
  2. Неэффективная работа тепловой изоляции стен и крыши — скрытые дефекты, некачественный монтаж, повреждения и т.п.;
  3. Притоки холода через монтажные отверстия кондиционера, щели в окнах и дверях, вентиляцию;
  4. Неэффективная работа радиаторов;
  5. Мостики холода;
  6. Влияние кладочных швов.

15 скрытых утечек тепла в частном доме, о которых вы не догадывались