Положительные свойства воды как огнетушащего вещества. Тушение пожара водой: правила, достоинства и недостатки Недостатки воды как огнетушащего средства

Вода является одним из наиболее широко распространенных и наиболее универсальных средств, применяемых для тушения пожаров. Она эффективна при тушении пожаров, связанных с горением веществ, находящихся во всех трех состояниях. Поэтому ее широко применяют для тушения пожаров практически повсеместно, кроме тех редких случаев, когда ее применить нельзя. Воду нельзя применять для тушения пожаров в следующих случаях:

нельзя тушить горючие вещества и материалы, с которыми вода вступает в интенсивное химическое взаимодействие с выделением тепла или горючих компонентов (например, пожары, связанные с горением щелочных и щелочно – земельных металлов, металлов типа лития, натрия, карбида кальция и других, а также кислот и щелочей, с которыми вода бурно взаимодействует);

водой нельзя тушить пожары, с температурой выше 1800 – 2000 0 С, так как при этом возникает интенсивная диссоциация паров воды на водород и кислород, которые интенсифицируют процесс горения;

нельзя тушить пожары, при которых применение воды не обеспечивает требуемых условий безопасности для личного состава. Например, пожары электроустановок, находящихся под высоким напряжением, и т. д.

Во всех остальных случаях вода является надежным, эффективным средством для тушения пожаров и поэтому она нашла наиболее широкое применение. Вода обладает рядом достоинств как огнетушащее средство: термической стойкостью, намного превышающей термическую стойкость других негорючих жидкостей, высокой теплоемкостью и теплотой испарения, относительной химической инертностью. К отрицательным свойствам воды относятся: высокая температура замерзания и аномалия изменения плотности воды при охлаждении, что затрудняет ее применение при низких отрицательных температурах, сравнительно малая вязкость и высокий коэффициент поверхностного натяжения, ухудшающие смачивающие способности воды и тем самым снижающие коэффициент ее использования в процессе тушения, а также электропроводность воды, содержащей примеси.

По механизму прекращения горения вода относится к категории охлаждающих огнетушащих средств. Но сам механизм прекращения горения зависит от режима горения, от вида горючего и его агрегатного состояния. При тушении пожаров, связанных с горением горючих газов (всегда) и жидкостей (иногда) доминирующим механизмом прекращения горения является охлаждение зоны горения, который реализуется в случае применения объемного метода тушения.

Воду можно подавать в зону горения в виде компактных струй, распыленных струй и тонкораспыленной воды. Два последних случая наиболее полно соответствуют понятию объемной подачи жидкого огнетушащего средства в зону горения. Компактная струя, пройдя сквозь зону горения, не окажет на нее почти никакого воздействия.

При тушении ЛВЖ и ГЖ компактная струя не окажет на факел пламени почти никакого воздействия. А, попав на поверхность ЛВЖ и ГЖ, она будет не очень эффективно ее охлаждать. Из-за большого удельного веса воды по сравнению с горючими углеводородами она быстро опустится на дно. Охлаждение прогретых до температуры кипения поверхностных слоев горючей жидкости будет не столь интенсивным, как если бы была подана распыленная или тонкораспыленная вода. При тушении ТГМ компактные струи воды, поданные в факел пламени, также, как и в первых двух случаях, не окажут влияния на зону горения, а попав на поверхность ТГМ, они не очень эффективно будут их охлаждать и тем самым будут мало способствовать тушению.

Мощные компактные струи воды подают при тушении крупных развившихся пожаров штабелей древесины, так как при таком интенсивном горении распыленные струи, а тем более тонкораспыленная вода не долетят не только к горящей древесине, но даже не попадут внутрь факела пламени. Они испарятся во внешних зонах факела пламени или унесутся вверх интенсивными газовыми потоками, практически не повлияв на процесс горения.

Во всех остальных случаях распыленные струи и тонкораспыленная вода более эффективны как при тушении пожаров объемным способом, так и при тушении по поверхности горючего материала. При прекращении пламенного горения компактная струя менее эффективна потому, что, пролетая сквозь зону горения, не обеспечивает охлаждающего воздействия, так как она имеет небольшую площадь поверхности контакта с пламенем и малое время взаимодействия. Тогда как распыленные струи имеют значительно большую поверхность контакта с факелом пламени и меньшую скорость пролета – большее время взаимодействия. А еще лучше условия теплоотвода из факела пламени у тонкораспыленной воды.

Значит, чем больше поверхность контакта жидкости с факелом пламени и время этого контакта при прочих равных условиях, тем интенсивнее теплоотвод, Очень малое тепловое и аэродинамическое взаимодействие с факелом пламени у компактной струи, большее – у распыленной, еще большее – у тонкораспыленной воды, подаваемой в зону пламени. Наибольший эффект тушения при подаче воды в факел пламени будет в том случае, когда ее охлаждающий эффект будет максимальным. То есть когда вся поданная на тушение пожара вода испарится за счет отвода тепла от факела пламени, непосредственно из зоны протекания химических реакций горения. Поэтому при таком механизме прекращения горения следует стремиться к тому, чтобы максимально возможное количество воды испарялось в объеме факела пламени, а не за его пределами. А при тушении водой путем подачи ее на поверхность горючих жидкостей или ТГМ более равномерная подача распыленной воды эффективна потому, что максимальный охлаждающий эффект будет иметь место при полном испарении всей поданной на тушение пожара воды за счет отъема тепла от горючего материала. Поэтому вода должна находиться в контакте с поверхностными (наиболее прогретыми) слоями ЛВЖ, ГЖ или ТГМ до полного ее испарения.

Вода – наиболее широко применяемое средство для тушения загоревшихся веществ в разных агрегатных состояниях. Помимо доступности и дешевизны, факторами, обуславливающими достоинства воды, как отличного огнетушащего средства, являются высокая теплота испарения, значительная теплоемкость, химическая нейтральность, отсутствие ядовитости, подвижность. Эти свойства воды обеспечивают хорошее охлаждение не только загоревшихся объектов, но и тех объектов, которые расположены вблизи очага горения. Это позволяет предотвратить другие загорания, взрывы и разрушения. Хорошая подвижность обеспечивает легкость при транспортировании и доставки воды в отдаленные и труднодоступные места.

Вода обеспечивает охлаждающее действие, разбавление горючей среды парами, которые образуются при испарении, а также механическое воздействие на горящее вещество (срыв пламени). Разбавляющее действие, которое приводит к снижению содержания кислорода в воздухе, объясняется тем, что объем выделяемого пара в 1700 раз больше объема испарившейся воды.

Объем водяного пара, который образуется при пламенном горении, невелик, так как вода контактирует с горящим материалом краткое время и роль самого пара в прекращении горения совсем незначительная. При загорании твердых материалов главную роль в тушении пожара играет охлаждение поверхности.

Подавать воду в очаг горения можно в виде распыленных или сплошных струй. Сплошные струи – это неразрывный поток воды, имеющий сравнительно небольшое сечение и большую скорость. Эти струи характеризуются определенной дальностью полета и большой ударной силой. При этом на малую площадь воздействуют значительные объемы воды.

Для тушения пожаров используют сплошные струи тогда, когда нужно подать воду на малое расстояние или придать ей большую ударную силу. Этот способ является самым распространенным из-за своей простоты. Его можно использовать при тушении пожаров газовых фонтанов, при высоком очаге пожара, когда невозможно подойти близко к очагу горения и направить ствол для подачи воды. При необходимости можно также охлаждать соседние с горящим объектом конструкции или резервуары с большого расстояния.


Распыленные струи - это поток воды, который состоит из мельчайших капель. Эти струи характеризуются небольшой ударной силой, но широкой дальностью действия, орошающую большую поверхность. Делая подачу воды распыленными струями, создаются самые благоприятные условия для ее испарения, тем самым повышается охлаждающий эффект и разбавления горящей среды. Тушение пожара распыленными струями имеет много преимуществ (основное – сокращение расхода воды), поэтому в последние годы оно находит все больше и больше применений.

Установлено, что для тушения бензина самый оптимальный диаметр капель составляет 0,1 мм, для спирта и керосина - 0,3 мм, для нефтепродуктов, имеющих высокую температуру вспышки, и трансформаторного масла - 0,5 мм. Отношение времени испарения капли ко времени ее нагревания не зависит от размера капли воды и составляет 13,5. Также установлено, что для испарения капли диаметром 0,1 мм нужно всего 0,04с. За этот период времени, капли с указанной степенью дисперсности зачастую успевают полностью превратится в пар и обеспечить значительный коэффициент использования и оправданный эффект тушения. Более крупные капли могут полностью не испарится. Они не дают такого эффекта, который определяется интенсивностью испарения воды, приводящего к достаточному снижению температуры и разбавлению горючей системы.

Самым главным недостатком воды, который ограничивает условия и область ее применения как огнетушащего средства, является сравнительно большая температура замерзания. Для снижения температуры замерзания применяют специальные антифризы и добавки: некоторые спирты (гликоли), минеральные соли (СаСl, К2СО3, MgCl),.
В зависимости от источника, вода может содержать разные природные соли, обуславливающие повышение ее электропроводности и коррозионной способности. Соли и пенообразователи, используемые против замерзания, а также другие добавки немного усиливают эти свойства. Предотвратить коррозию металлических изделий (трубопроводов, корпусов и др.), контактирующих с водой, можно как нанесением на них специальных покрытий, так и добавлением в воду ингибиторов коррозии. В качестве ингибиторов применяют различные неорганические соединения (карбонаты, кислые фосфаты, силикаты щелочных металлов, окислители типа хроматов калия, нитрит натрия и натрий, с помощью которых на поверхности образовывается защитный слой), органические соединения (вещества, которые способны абсорбировать кислород). Самый эффективный из них – это хромат натрия, но он очень токсичен. Для нормальной защиты от коррозии пожарного снабжения обычно применяются покрытия.


Добавляемые в воду примеси (особенно диссоциирующие соли) намного усиливают ее электропроводность (примерно на 2-3 порядка). К примеру, при использовании чистой воды из водопровода электрический ток на дистанции 1,5 м от электрооборудования почти равен нулю, а при добавке в нее соды в количестве 0,5 % повышается до 50 мА. Именно поэтому при тушении пожаров водой делают обесточивание электрооборудования. Известны многие примеры, когда для защиты высоковольтного кабельного хозяйства применяют воду. В таком случае используют только дистиллированную воду.

Нельзя использовать воду для тушения тех веществ, какие бурно реагируют с ней и выделяют горючие газы. К таким веществам можно отнести металлы (самые опасные щелочные металлы, которые реагируют с взрывом), металлические соединения (концентрированные литийорганические и алюминийорганические соединения), гидриды металлов, многие карбиды металлов и др. Для тушения таких пожаров .

Хорошее охлаждающее свойство воды обусловлено её высокой теплоёмкостью. При попадании на горящее вещество вода частично испаряется и превращается в пар. При испарении её объём увеличивается в 1700 раз, благодаря чему кислород воздуха вытесняется из зоны очага пожара водяным паром . Вода, имея высокую теплоту парообразования, отнимает от горящих материалов и продуктов горения большое количество теплоты, что делает её не-заменимым средством охлаждения. Вода обладает высокой термической стойкостью, её пары только при температуре свыше 1700°С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твёрдых материалов (древесины, пластмасс, каучука и др.) безопасно, т. к. температура горения их не превышает 1300°С . Однако взаимодействие воды с щелочными и щёлочноземельными металлами, которые при горении создают в зоне пожара температуру, превышающую термическую стойкость воды, может привести к тяжёлым последствиям (напр., к взрывам).

Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими допускает использование вода не только для тушения, но и для защиты материалов от воспламенения. Малая вязкость и несжимаемость воды позволяет подавать её по на значительные расстояния и под большим давлением. Вода способна растворять некоторые газы и пары, поглощать аэрозоли, снижать температуру в помещениях. Воду применяют также для защиты от теплового излучения (водяная завеса), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок, для осаждения продуктов горения на пожарах в зданиях. Для этих целей применяют распылённые и тонкораспылённые струи, что приводит к повышению огнетушащей эффективности воды в несколько раз (см. Тонкораспылённая вода). Некоторые ГЖ (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с ней, они образуют негорючие или менее горючие растворы ПОЖАРНАЯ БЕЗОПАСНОСТЬ. ЭНЦИКЛОПЕДИЯ. .

Вещества и материалы, на которые нельзя подавать воду и ее растворы

Вещество, материал Степень опасности
Азид свинца Взрывается при увеличении влажности до 30% Иванников В.П., Клюс П.П. Справочник руководителя тушения пожара. - М.: Стройиздат, 1987.
Алюминий, магний, цинк, цинковая пыль При горении разлагают воду на кислород и водород
Битум Подача компактных струй воды ведет к выбросу и усилению горения
Гидриды щелочных и щелочноземельных металлов
Гидросульфит натрия Самовозгорается и взрывается от действия воды
Гремучая ртуть Взрывается от удара компактной водяной струи
Железо кремнистое (ферросилиций) Выделяется фосфористый водород, самовоспламеняющийся на воздухе
Калий, кальций, натрий, рубидий, цезий металлические Реагируют с водой с выделением водорода, возможен взрыв
Кальций и натрий (фосфористые) Реагируют с водой с выделением фосфористого водорода, самовоспламеняющегося на воздухе
Калий и натрий (перекиси) При попадании воды возможен взрывообразный выброс с усилением горения
Карбиды алюминия, бария и кальция Разлагаются с выделением горючих гaзов, возможен взрыв
Карбиды щелочных металлов При контакте с водой взрываются
Магний и его сплавы При горении разлагают воду на водород и кислород
Метафос С водой реагирует с образованием взрывоопасного вещества Теребнев В.В., Смирнов В.А., Семенов В.А., Пожаротушение (Справочник). 2-е издание. - Екатеринбург: ООО Издательство "Калан", 2012г. – 472с.
Натрий сернистый и гидросернокислый Сильно разогревается (свыше 400 °С), может вызвать возгорание горючих веществ, а также ожог при попадании на кожу, сопровождающийся труднозаживающими язвами
Негашеная известь Реагирует с водой с выделением большого количества тепла
Нитроглицерин Взрывается от удара струи воды
Селитра Подача струи воды в расплав ведет к сильному взрывообразному выбросу и усилению горения
Серный ангидрид При попадании воды возможен взрывообразный выброс
Сесквилхлорид Взаимодействует с водой с образованием взрыва
Силаны Реагируют с водой с выделением водородистого кремния, самовоспламеняющегося на воздухе
Термит, титан и его сплавы, титан четыреххлористый, электрон Реагируют с водой с выделением большого количества теплоты, разлагают воду на кислород и водород
Триэтилалюминий и хлорсульфоновая кислота Реагируют с водой с образованием взрыва
Фосфорид алюминия Разлагается от воды и самовоспламеняется
Цианамид калия При увлажнении выделяется ядовитый цианистый водород

Добавки

Наряду с полезными качествами у воды имеются и отрицательные свойства. Основной недостаток воды, как огнетушащего средства – высокое поверхностное натяжение.

Кроме того, излишки пролитой воды при тушении пожара в здании могут причинить вред, сопоставимый с

Наряду с этим вода обладает свойствами, ограничивающими область ее применения. Так, при тушении вододй нефтепродукты и многие другие горючие жидкости всплывают и продолжают гореть на поверхности, поэтому вода может оказаться малоэффективной при их тушении. Огнетушащий эффект при тушении водой в таких случаях может быть повышен путем подачи ее в распыленном состоянии.

Тушение пожаров водой производят установками водяного пожаротушения, пожарными автомашинами и водяными стволами (ручными и лафетными). Для подачи воды в эти установки используют устраиваемые на промышленных предприятиях и в населенных пунктах водопроводы.

Воду при пожаре используют на наружное и внутреннее пожаротушение. Расход воды на наружное пожаротушение принимают в соответствии со строительными нормами и правилами. Расход воды на пожаротушение зависит от категории пожарной опасности предприятия, степени огнестойкости строительных конструкций здания, объема производственного помещения.

Одним из основных условий, которым должны удовлетворять наружные водопроводы, является обеспечение постоянного давления в водопроводной сети, поддерживаемого постоянно действующими насосами, водонапорной башней или пневматической установкой. Это давление часто определяют из условия работы внутренних пожарных кранов.

Для того, чтобы обеспечить тушение пожара в начальной стадии его возникновения, в большинстве производственных и общественных зданий на внутренней водопроводной сети устраивают внутренние пожарные краны.

По способу создания давления воды пожарные водопроводы подразделяют на водопроводы высокого и низкого давления. Пожарные водопроводы высокого давления устраивают таким образом, чтобы давление в водопроводе постоянно было достаточным для непосредственной подачи воды от гидрантов или стационарных лафетных стволов к месту пожара. Из водопроводов низкого давления передвижные пожарные автонасосы или мотопомпы забирают воду через пожарные гидранты и подают ее под необходимым давлением к месту пожара.

Система пожарных водопроводов находит применение в различных комбинациях: выбор той или иной системы зависит от характера производства, занимаемой им территории и т.п.

К установками водяного пожаротушения относят спринклерные и дренчерные установки. Они представляют собой разветвленную, заполненую водой систему труб, оборудованную специальными головками. В случае пожара система реагирует (по-разному, в зависимости от типа) и орошает конструкции помещенеия и оборудования в озне действия головок.

Пена

Пены применяют для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой. Огнетушащие свойства пены определяют ее кратностью - отношением объема пены к объему ее жидкой фазы, стойкостью, дисперсностью и вязкостью. На эти свойства пены помимо ее физико-химических свойств оказывают влияне природа горючего вещества, условия протекания пожара и подачи пены.

В зависимости от способа и условий получения огнетушащие пены делят на химические и воздушно-механические. Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразующего вещества и представляет собой концентрированную эмульсию двуокиси углерода в водном растворе минеральных солей, содержащем пенообразующее вещество.

Применение химической пены в связи с высокой стоимостью и сложностью организации пожаротушения сокращается.

Пеногенерирующая аппаратура включает воздушно-пенные стволы для получения низкократной пены, генераторы пены и пенные оросители для получения среднекратной пены.

Газы

При тушении пожаров инертными газообразными разбавители используют двуокись углерода, азот, дымовые или отработавшие газы, пар, а также аргон и другие газы. Огнетушащие действие названных составов заключается в разбавлении воздуха и снижении в нем содержания кислорода до концентрации, при которой прекращается горение. Огнетушащий эффект при разбавлении указанными газами обуславливается потерями теплоты на нагревание разбавителей и снижением теплового эффекта реакции. Особое место среди огнетушащих составов занимает двуокись углерода (углекислый газ), которую применяют для тушения складов ЛВЖ, аккумуляторных станций,

сушильных печей, стендов для испытания электродвигателей и т.д.

Следует помнить, однако, что двуокись углерода нельзя применять для тушения веществ, в состав молекул которых входит кислород, щелочных и щелочноземельных метталов, а также тлеющих материалов. Для тушения этих веществ используют азот или аргон, причем последний применяют в тех случаях, когда имеется опасность образования нитридов металлов, обладающих взрывчатыми свойствами и чувствительностью к удару.

В последнее время разработан новый способ подачи газов в сжиженном состоянии в защищаемый объем, который обладает существенным преимуществами перед способом, основанным на подаче сжатых газов.

При новом способе подачи практически отпадает необходимость в ограниченеии размеров допускаемых к защите объектов, поскольку жидкость занимает примерно в 500 раз меньший объем, чем равное по массе количество газа, и не требует больших усилий для ее подачи. Кроме того, при испарении сжиженного газа достигается значительных охлаждающий эффект и отпадает ограничение, связанно с возможным разрушением ослабленных проемов, поскольку при подаче сжиженных газов создается мягкий режим заполнения без опасного повышения давления.

Ингибиторы

Все описанные выше огнетушащие составы оказывают пассивное действие на пламя. Более перспективны огнетушащие средства, которые эффективно тормозят химические реакции в пламени, т.е. оказывают на них ингибирующее воздействие. Наибольшее применение в пожаротушении нашли огнетушащие составы - ингибиторы на основе предельных углеводородов, в которых один или несколько атомов водорода замещены атомами галоидов (фтора, хлора, брома).

Галоидоуглеводороды плохо растворятся в воде, но хорошо смешиваются со многими органическими веществами. Огнетушащие свойства галоидированных углеводородов возрастают с увеличением моряной массы содержащегося в них галоида.

Галоидоуглеводородные составы обладают удобными для пожаротушения физическими свойствами. Так, высокие значения плотности жидкости и паров обуславливают возможность создания огнетушащей струи и проникновения капель в пламя, а также удержание огнетушащих паров около очага горения. Низкие температуры замерзания позволяют использовать эти составы при минусовых температурах.

В последние годы в качестве средств тушения пожаров применяют порошковые составы на основе неорганических солей щелочных металлов. Они отличаются высокой огнетушащей эффективностью и универсальностью, т.е. способностью тушить любые материалы, в том числе нетушимые всеми другими средствами.

Порошковые составы являются, в частности, единственным средством тушения пожаров щелочных металлов, алюминийорганических и других металлоорганических соединений (их изготавливает промышленность на основе карбонатов и бикарбонатов натрия и калия, фосфорно-аммонийных солей, порошок на основе грифита для тушения металлов и т.д.).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

СРЕДСТВА И СПОСОБЫ ПОЖАРОТУШЕНИЯ

КУРСОВАЯ РАБОТА

ВОДА КАК СРЕДСТВО ПОЖАРОТУШЕНИЯ

Выполнила студентка

3 курса, группа ПБ

Алексеева Татьяна Робертовна

Москва 2013

5. Область применения воды

Список литературы

1. Огнетушащая эффективность воды

Пожаротушение - это комплекс действий и мероприятий, направленных на ликвидацию возникшего пожара. Возникновение пожара возможно при одновременном присутствии трех компонентов: горючего вещества, окислителя и источника зажигания. Развитие пожара требует присутствия не только горючих веществ и окислителя, но и передачи тепла от зоны горения к горючему материалу. Поэтому тушение пожара можно обеспечить следующими способами:

  • изоляцией очага горения от воздуха или снижение путем разбавления воздуха негорючими газами концентрации кислорода до значения, при котором не может происходить горение;
  • охлаждением очага горения до температур ниже температур воспламенения и вспышки;
  • замедлением скорости химических реакций в пламени;
  • механическим срывом пламени путем воздействия на очаг горения сильной струи газа или воды;
  • созданием условий огнепреграждения.

Результаты воздействий всех существующих средств тушения на процесс горения зависят от физико-химических свойств горящих материалов, условий горения, интенсивности подачи и других факторов. Например, водой можно охлаждать и изолировать (или разбавлять) очаг горения, пенными средствами - изолировать и охлаждать, инертными разбавителями - разбавлять воздух, снижая концентрацию кислорода, хладонами - ингибировать горение и препятствовать распространению пламени порошковым облаком. Для любого средства тушения доминирующим является только одно огнетушащее воздействие. Вода оказывает преимущественно охлаждающее воздействие, пены - изолирующее, хладоны и порошки - ингибирующее.

Большинство средств тушения не являются универсальными, т.е. приемлемыми для тушения любых пожаров. В ряде случаев средства тушения оказываются несовместимыми с горящими материалами (например, взаимодействие воды с горящими щелочными металлами или металлоорганическими соединениями сопровождается взрывом).

При выборе средств тушения следует исходить из возможности получения максимального огнетушащего эффекта при минимальных затратах. Выбор средств тушения должен производиться с учетом класса пожара. Вода является наиболее широко применяемым огнетушащим средством тушения пожаров веществ в различных агрегатных состояниях.

Высокая огнетушащая эффективность воды и большие масштабы ее использования для тушения пожаров обусловлены комплексом особых физико-химических свойств воды и в первую очередь необычно высокой, в сравнении с другими жидкостями, энергоемкостью испарения и нагревания паров воды. Так, на испарение одного килограмма воды и нагревание паров до температуры 1000 К необходимо затратить около 3100 кДж/кг, тогда как аналогичный процесс с органическими жидкостями требует не более 300 кДж/кг, т.е. энергоемкость фазового превращения воды и нагревания ее паров в 10 раз выше, чем в среднем для любой другой жидкости. При этом теплопроводность воды и ее паров почти на порядок выше, чем для других жидкостей.

Хорошо известно, что наибольшей эффективностью при тушении пожаров обладает распыленная, высокодисперсная вода. Для получения высокодисперсной струи воды, как правило, требуется высокое давление, но и при этом дальность подачи распыленной воды ограничена малой дистанцией. Новый принцип получения высокодисперсного потока воды основан на новом способе получения распыленной воды - путем многократного последовательного диспергирования водной струи.

Основным механизмом действия воды при тушении пламени на пожаре является охлаждение. В зависимости от степени дисперсности капель воды и типа пожара охлаждаться может либо преимущественно зона горения, либо горящий материал, либо и то и другое вместе.

Не менее важным фактором является разбавление горючей газовой смеси водяными парами, что ведет к ее флегматизации и прекращению горения.

Кроме этого, распыленные капли воды поглощают лучистое тепло, абсорбируют горючий компонент и приводят к коагуляции дымовых частиц.

2. Достоинства и недостатки воды

Факторами, обусловливающими достоинства воды как огнетушащего средства, помимо доступности и дешевизны являются значительная теплоемкость, высокая скрытая теплота испарения, подвижность, химическая нейтральность и отсутствие ядовитости. Такие свойства воды обеспечивают эффективное охлаждение не только горящих объектов, но и объектов, расположенных вблизи очага горения, что позволяет предотвратить разрушение, взрыв и загорание последних. Хорошая подвижность обеспечивает легкость транспортировки воды и доставки ее (в виде сплошных струй) в удаленные и труднодоступные места.

Огнетушащая способность воды обусловливается охлаждающим действием, разбавлением горючей среды образующимися при испарении парами и механическим воздействием на горящее вещество, т.е. срывом пламени.

Попадая в зону горения, на горящее вещество, вода отнимает от горящих материалов и продуктов горения большое количество теплоты. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны очага пожара.

Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700°С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300-1350°С и тушение их водой не опасно.

Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство, в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.

Малая вязкость и не сжимаемость воды позволяют подавать ее по рукавам на значительные расстояния и под большим давлением.

Вода способна растворять некоторые пары, газы и поглощать аэрозоли. Значит, водой можно осаждать продукты горения на пожарах в зданиях. Для этих целей применяют распыленные и тонкораспыленные струи.

Некоторые горючие жидкости (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с водой, они образуют негорючие или менее горючие растворы.

Но в то же время вода обладает рядом недостатков, которые сужают область ее использования как огнетушащего средства. Большое количество используемой в тушении воды может нанести непоправимый ущерб материальным ценностям, иногда не меньше, чем сам пожар. Основной недостаток у воды, как огнетушащего средства, заключается в том, что из-за высокого поверхностного натяжения (72,8*-103 Дж/м2) она плохо смачивает твердые материалы и особенно волокнистые вещества. Другими недостатками являются: замерзание воды при 0°С (снижает транспортабельность воды при низких температурах), электропроводность (приводит в невозможности тушения водой электроустановок), высокая плотность (при тушении легких горящих жидкостей вода не ограничивает доступ воздуха в зону горения, а, растекаясь, способствует еще большему распространению огня).

3. Интенсивность подачи воды для тушения

Огнетушащие средства имеют первостепенное значение в прекращении горения. Однако горение может быть ликвидировано лишь в том случае, когда для его прекращения подается определенное количество огнетушащего вещества.

В практических расчетах количество огнетушащих средств, требуемых для прекращения горения, определяют по интенсивности их подачи. Интенсивностью подачи называется количество огнетушащего средства, подаваемого в единицу времени на единицу соответствующего геометрического параметра пожара (площади, объема, периметра или фронта). Интенсивность подачи огнетушащих средств определяют опытным путем и расчетами при анализе потушенных пожаров:

Qо. с / 60tт П,

Где:- интенсивность подачи огнетушащих средств, л/ (м2 ·с), кг/ (м2 ·с), кг/ (м3 ·с), м3/ (м3 ·с), л/ (м ·с);о. с - расход огнетушащего средства во время тушения пожара или проведения опыта, л, кг, м3;т - время, затраченное на тушение пожара или проведение опыта, мин;

П - величина расчетного параметра пожара: площадь, м2; объем, м3; периметр или фронт, м.

Интенсивность подачи можно определять через фактический удельный расход огнетушащего средства;

Qу / 60tт П,

Где Qу - фактический удельный расход огнетушащего средства за время прекращения горения, л, кг, м3.

Для зданий и помещений интенсивность подачи определяют по тактическим расходам огнетушащих средств на имевших место пожарах:

Qф / П,

Где Qф - фактический расход огнетушащего средства, л/с, кг/с, м3/с (см, п.2.4).

В зависимости от расчетной единицы параметра пожара (м2, м3, м) интенсивность подачи огнетушащих средств подразделяют на поверхностную , объемную и линейную .

Если в нормативных документах и справочной литературе нет данных по интенсивности подачи огнетушащих средств на защиту объектов (например, при пожарах в зданиях), ее устанавливают по тактическим условиям обстановки и осуществления боевых действий по тушению пожара, исходя из оперативно-тактической характеристики объекта, или принимают уменьшенной в 4 раза по сравнению с требуемой интенсивностью подачи на тушение пожара

з = 0,25 Iтр,

Линейная интенсивность подачи огнетушащих средств для тушения пожаров в таблицах, как правило, не приводится. Она зависит от обстановки на пожаре и, если используется при расчете огнетушащих средств, ее находят как производный показатель от интенсивности поверхностной:

л = Is hт,

Где hт - глубина тушения, м (принимается, при тушении ручными стволами - 5 м, лафетными - 10 м).

Общая интенсивность подачи огнетушащих средств состоит и двух частей: интенсивности огнетушащего средства, участвующего непосредственно в прекращении горения Iпр. г, и интенсивности потерь Iпот.

Iпр. г + Iпот.

Средние, практически целесообразные, значения интенсивности подачи огнетушащих средств, называемые оптимальными (требуемыми, расчетными), установленные опытным путем и практикой тушения пожаров, приведены ниже и в табл.1

Интенсивность подачи воды при тушении пожаров, л/ (м2с)

Объект тушенияИнтенсивность1. Здания и сооруженияАдминистративные здания: I - III степени огнестойкости0,06IV степени огнестойкости0,10V степени огнестойкости0,15Подвальные помещения0,10Чердачные помещения0,10Ангары, гаражи, мастерские, трамвайные и троллейбусные депо0, 20Больницы0,10Жилые дома и подсобные постройки: I - III степени огнестойкости0,03IV степени огнестойкости0,10V степени огнестойкости0,15Подвальные помещения0,15Чердачные помещения0,15Животноводческие зданияI - III степени огнестойкости0,10IV степени огнестойкости0,15V степени огнестойкости0, 20Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры): Сцена0.20Зрительный зал0,15Подсобные помещения0,15Мельницы и элеваторы0,14Производственные зданияI - II степени огнестойкости0,35III степени огнестойкости0, 20IV - V степени огнестойкости0,25Окрасочные цехи0, 20Подвальные помещения0,30Сгораемые покрытия больших площадей в производственных зданиях: При тушении снизу внутри здания0,15При тушении снаружи со стороны покрытия0,08При тушении снаружи при развившемся пожаре0,15Строящиеся здания0,10Торговые предприятия и склады товарно-материальных ценностей0, 20Холодильники0.10Электростанции и подстанции: Кабельные туннели и полуэтажи (подача тонкораспыленной воды) 0, 20Машинные залы и котельные отделения0, 20Галереи топливоподачи0,10Трансформаторы, реакторы, масляные выключатели (подача тонкораспыленной воды) 0,102. Транспортные средства Автомобили, трамваи, троллейбусы на открытых стоянках0,10Самолеты и вертолеты: Внутренняя отделка (при подаче тонкораспыленной воды) 0,08Конструкции с наличием магниевых сплавов0,25Корпус0,15Суда (сухогрузные и пассажирские): Надстройки (пожары внутренние и наружные) при подаче цельных и тонкораспыленных струй0, 20 Трюмы0, 203. Твердые материалыБумага разрыхленная0,30Древесина: Балансовая, при влажности, %40 - 500, 20Менее 400,50Пиломатериалы в штабелях в пределах одной группы при влажности, %; 6 - 140,4520 - 300,30Свыше 300, 20Круглый лес в штабелях0,3Щепа в кучах с влажностью 30 - 50 %0,10Каучук (натуральный или искусственный), резина и резинотехнические изделия0,30 Льнокостра в отвалах (подача тонкораспыленной воды) 0, 20Льнотресты (скирды, тюки) 0.25Пластмассы: Термопласты0,14Реактопласты0,10Полимерные материалы и изделия из них0, 20Текстолит, карболит, отходы пластмасс, триацетатная пленка0,30Торф на фрезерных полях влажностью 15 - 30 % (при удельном расходе воды 110 - 140 л/м2 и времени тушения 20 мин.) 0,10Торф фрезерный в штабелях (при удельном расходе воды 235 л/м и времени тушения 20 мин) 0, 20 Хлопок и другие волокнистые материалы: Открытые склады0, 20Закрытые склады0,30Целлулоид и изделия из него0,404. Легковоспламеняющиеся и горючие жидкости (при тушении тонкораспыленной водой) Ацетон0,40Нефтепродукты в емкостях: С температурой вспышки ниже 28оС0,30С температурой вспышки 28 - 60оС0, 20С температурой вспышки более 60°С0, 20Горючая жидкость, разлившаяся на поверхности площадки, в траншеях технологических лотках0, 20 Термоизоляция, пропитанная нефтепродуктами0, 20Спирты (этиловый, метиловый, пропиловый, бутиловый и др.) на складах и спиртзаводах0,40 Нефть и конденсат вокруг скважины фонтана0, 20

Примечания:

При подаче воды со смачивателем интенсивность подачи по таблице снижается в 2 раза.

Хлопок, другие волокнистые материалы и торф необходимо тушить только с добавлением смачивателя.

Расход воды на пожаротушение определяется в зависимости от класса функциональной пожарной опасности объекта, его огнестойкости, категории пожарной опасности (для производственных помещений), объема согласно СП 8.13130.2009, для наружного пожаротушения и СП 10.13130.2009, для внутреннего пожаротушения.

4. Способы подачи воды для пожаротушения

Самыми надежными в решении задач пожаротушения являются системы автоматического пожаротушения. Данные системы приводятся в действие пожарной автоматикой по показаниям датчиков. В свою очередь, это обеспечивает оперативное тушение очага возгорания без участия человека.

Автоматические системы пожаротушения обеспечивают:

срабатывание звукового и светового оповещения

выдача сигнала "тревога" на пульт пожарной охраны

автоматическое закрытие огнесдерживающих клапанов и дверей

автоматическое включение систем дымоудаления

отключение вентиляции

отключение электрооборудования

автоматическую подачу огнетушащего вещества

оповещение о подаче.

В качестве огнетушащего вещества используются: инертный газ - хладон, углекислый газ, пена (низкой, средней, высокой кратности), огнетушащие порошки, аэрозоли и вода.

пожаротушение вода огнетушащая эффективность

"Водяные" установки разделяются на спринклерные, предназначенные для локального тушения пожаров, и дренчерные - для тушения огня на большой территории. Спринклерные установки запрограммированы на срабатывание при повышении температуры выше заданной нормы. При тушении огня струя распыленной воды подается в непосредственной близости от очага возгорания. Узлы управления данных установок бывают "сухого" типа - для неотапливаемых объектов, и "мокрого" - для помещений, температура в которых не опускается ниже 00 С.

Спринклерные установки эффективны для защиты помещений, пожар в которых, предположительно, будет быстро развиваться.

Оросители данного типа установок весьма разнообразны, это позволяет использовать их в помещениях с различным интерьером.

Спринклер представляет собой клапан, срабатывающий при воздействии на него термочувствительного запорного устройства. Как правило, это стеклянная колба с жидкостью, которая лопается при заданной температуре. Спринклеры устанавливаются на трубопроводах, внутри которых находятся вода или воздух под высоким давлением.

Как только температура в помещении повышается выше заданной, стеклянное запорное устройство спринклера разрушается, вследствие разрушения, открывается клапан подачи воды/воздуха, давление в трубопроводе падает. При падении давления срабатывает датчик, который запускает насос, подающий воду в трубопровод. Данная опция обеспечивает подачу необходимого количества воды к месту возникновения пожара.

Существует целый ряд спринклеров, которые отличаются между собой различной температурой срабатывания.

Спринклеры с предварительным действием значительно снижают вероятность ложного срабатывания. Конструкция устройства такова, что для подачи воды необходимо отрыться обоим спринклерам, входящим в состав системы.

Дренчерные системы, в отличие от спринклерных, срабатывают по команде пожарного извещателя. Это позволяет ликвидировать пожар ранней стадии развития. Основным отличием дренчерных систем является то, что вода для тушения пожара подаётся в трубопровод непосредственно при возникновении пожара. Данные системы в момент пожара подают значительно большее количество воды на защищаемую площадь. Как правило, дренчерные системы используются для создания водяных завес и охлаждения особо чувствительных к нагреву и легковоспламеняющихся объектов.

Для подачи воды в дренчерную систему используется, так называемый, дренчерный узел управления. Узел активируется электрическим, пневматическим или гидравлическим способом. Сигнал на запуск дренчерной системы пожаротушения подаётся, как автоматическим способом - системой пожарной сигнализации, так и вручную.

Одна из новинок на рынке пожаротушения - установка с системой тонкораспыленной подачей воды.

Мельчайшие частички воды, поданные под высоким давлением, обладают высокой проникающей и дымоосаждающей способностью. Данная система значительно усиливает огнетушащий эффект.

Системы пожаротушения тонкораспыленной водой разработаны и созданы на основе оборудования низкого давления. Это позволяет обеспечивать высокоэффективную пожарную защиту с минимальным расходом воды и высокой надежностью. Подобные системы используются для тушения пожаров разных классов. Огнетушащее вещество - вода, а также вода с добавками, газоводяная смесь.

Вода, распыленная через тонкое отверстие, увеличивает площадь воздействия, таким образом, усиливается охлаждающее действие, которое потом увеличивается из-за испарения водяного тумана. Данный способ пожаротушения обеспечивает отличный эффект осаждения частиц дыма и отражение теплового излучения.

Огнетушащая эффективность воды зависит от способа подачи ее в очаг пожара.

Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения.

Сплошные струи используют при тушении наружных и открытых или развившихся внутренних пожаров, когда необходимо подать большое количество воды или если воде необходимо придать ударную силу, а также пожаров, когда к очагу близко подойти не представляется возможным, при охлаждении с больших расстояний соседних и горящих объектов, конструкций, аппаратов. Этот способ тушения является наиболее простым и распространенным.

Сплошные струи нельзя применять там, где может быть мучная, угольная и другая пыль, способная образовывать взрывоопасные концентрации.

5. Область применения воды

Воду применяют для ликвидации пожаров классов:

А - древесина, пластмассы, текстиль, бумага, уголь;

В - легковоспламеняющиеся и горючие жидкости, сжиженные газы, нефтепродукты (тушение тонкораспыленной водой);

С - горючие газы.

Воду нельзя использовать для тушения веществ, которые выделяют при контакте с ней тепло, горючие, токсичные или коррозионно-активные газы. К таким веществам относятся некоторые металлы и металлоорганические соединения, карбиды и гидриды металлов, горячие уголь и железо. Особенно опасно взаимодействие воды с горящими щелочными металлами. В результате такого взаимодействия возникают взрывы. При попадании воды на раскаленные уголь или железо возможно образование гремучей водородно-кислородной смеси.

В таблице 2 приведены вещества, которые нельзя тушить водой.

ВеществоХарактер взаимодействия с водойМеталлы: натрий, калий, магний, цинк и др. Реагируют с водой с образованием водородаАлюминийорганические соединенияРеагируют со взрывомЛитийорганические соединенияРазлагаются с образованием горючих газовАзид свинца, карбиды щелочных металлов, гидриды металлов, силаныРазлагаются с образованием горючих газовГидросульфат натрияПроисходит самовозгораниеГидросульфат натрияВзаимодействие с водой сопровождается бурным тепловыделениемБитум, перекись натрия, жиры, маслаУсиливается горение, происходят выбросы горящих веществ, разбрызгивание, вскипание

Водяные установки неэффективны для тушения легковоспламеняющихся и горючих жидкостей с температурой вспышки менее 90оС.

Вода, обладающая значительной электропроводностью, в присутствии примесей (особенно солей) увеличивает электропроводность в 100-1000 раз. При использовании воды для тушения электрооборудования, находящегося под напряжением, электрический ток в струе воды на расстоянии 1,5 м от электрооборудования равен нулю, а при добавке 0,5% соды возрастает до 50 мА. Поэтому при тушении пожаров водой электрооборудование обесточивают. При использовании дистиллированной воды, ею можно тушить даже высоковольтные установки.

6. Метод оценки применимости воды

При попадании воды на поверхность горящего вещества возможны хлопки, вспышки, разбрызгивание горящих материалов по большой площади, дополнительное возгорание, увеличение объема пламени, выброс горящего продукта из технологического оборудования. Они могут иметь большие масштабы или локальный характер.

Отсутствие количественных критериев оценки характера взаимодействия горящего вещества с водой затрудняет принятие оптимальных технических решений с применением воды в установках автоматического пожаротушения. Для ориентировочной оценки применимости водных средств можно воспользоваться двумя лабораторными методами. Первый метод заключается в визуальном наблюдении за характером взаимодействия воды с горящим в небольшом сосуде исследуемым продуктом. Второй метод предусматривает измерение объема выделяющего газа, а также степени разогрева при взаимодействии продукта с водой.

7. Способы повышения огнетушащей эффективности воды

Для повышения области применения воды в качестве огнетушащего средства, применяют специальные добавки (антифризы), понижающие температуру замерзания: минеральные соли (К2СО3, MgCl2, СаСl2), некоторые спирты (гликоли). Однако соли повышают коррозионную способность воды, поэтому их практически не применяют. Применение же гликолей существенно повышает стоимость тушения.

В зависимости от источника вода содержит различные природные соли, обусловливающие повышение ее коррозионной способности и электропроводности. Пенообразователи, соли против замерзания и другие добавки также усиливают эти свойства. Предотвратить коррозию контактирующих с водой металлических изделий (корпусов огнетушителей, трубопроводов и др.) можно либо нанесением на них специальных покрытий, либо добавлением к воде ингибиторов коррозии. В качестве последних применяют неорганические соединения (кислые фосфаты, карбонаты, силикаты щелочных металлов, окислители типа хроматов натрия, калия или нитрита натрия, образующие на поверхности защитный слой), органические соединения (алифатические амины и другие вещества, способные абсорбировать кислород). Наиболее эффективный из них - хромат натрия, но он токсичен. Для защиты от коррозии пожарного оборудования обычно применяют покрытия.

Для повышения огнетушащей эффективности воды, в нее вводят добавки, повышающие смачивающую способность, вязкость и т.п.

Эффект тушения пламени капиллярно-пористых, гидрофобных материалов, таких как торф, хлопок и тканные материалы достигается при добавлении к воде поверхностно-активных веществ - смачивателей.

Для уменьшения поверхностного натяжения воды рекомендуется применять смачиватели - поверхностно - активные вещества: смачиватель марки ДБ, эмульгатор ОП-4, вспомогательные вещества ОП-7 и ОП-10, являющиеся продуктами присоединения семи - десяти молекул этиленоксида к моно - и диалкилфенолам, алкильный радикал которых содержит 8-10 атомов углерода. Некоторые из этих соединений применяются также в качестве пенообразователей для получения воздушно-механической пены. Добавление в воду смачивателей позволяет существенно повысить ее огнетушащую эффективность. При введении смачивателя расход воды на тушение снижается в четыре раза, а время тушения - более чем вдвое.

Одним из способов повышения эффективности пожаротушения водой является использование тонкораспыленной воды. Эффективность тонкораспыленной воды обусловлена высокой удельной поверхностью мелких частиц, что повышает охлаждающий эффект за счет проникающего равномерного действия воды непосредственно на очаг горения и увеличения теплосъема. При этом значительно снижается вредное воздействие воды на окружающую среду.

Список литературы

1.Курс лекций "Средства и способы пожаротушения"

2.А.Я. Корольченко, Д.А. Корольченко. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х ч. - 2-е изд., перераб. и доп. - М.: Пожнаука, 2004. - Ч.1 - 713с., - Ч.2 - 747с.

.Теребнев В.В. Справочник руководителя тушения пожара. Тактические возможности пожарных подразделений. - М.: Пожнаука, 2004. - 248с.

.Справочник РТП (Клюс, Матвейкин)