Коэффициенты теплопроводности различных веществ и материалов. Теплопроводность основных строительных материалов

Теплопроводность - способность материала передавать тепло от одной своей части к другой в силу теплового движения молекул. Передача тепла в материале осуществляется кондукцией (путем контакта частиц материала), конвекцией (движением воздуха или другого газа в порах материала) и лучеиспусканием.


Теплопроводность зависит от средней плотности материала, его структуры, пористости, влажности и средней температуры слоя материала. С увеличением средней плотности материала, теплопроводность возрастает. Чем выше пористость, т.е. меньше средняя плотность материала, тем ниже теплопроводность. С увеличением влажности материала теплопроводность резко возрастает, при этом понижаются его теплоизоляционные свойства. Поэтому все теплоизоляционные материалы в теплоизоляционной конструкции защищают от попадания влаги покровным слоем - пароизоляция.

Сравнительные данные строительных материалов с одинаковой теплопроводностью

Коэффициент теплопроводности материалов

Материал

Коэффициент теплопроводности, Вт/м*К

Алебастровые плиты 0,47
Асбест (шифер) 0,35
Асбест волокнистый 0,15
Асбестоцемент 1,76
Асбоцементные плиты 0,35
Бетон термоизоляционный 0,18
Битум 0,47
Бумага 0,14
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,1
Войлок шерстяной 0,045
Гипс строительный 0,35
Глинозем 2,33
Гравий (наполнитель) 0,93
Гранит, базальт 3,5
Грунт 10% воды 1,75
Грунт 20% воды 2,1
Грунт песчаный 1,16
Грунт сухой 0,4
Грунт утрамбованный 1,05
Гудрон 0,3
Древесина - доски 0,15
Древесина - фанера 0,15
Древесина твердых пород 0,2
Древесно-стружечная плита ДСП 0,2
Зола древесная 0,15
Ипорка (вспененная смола) 0,038
Камень 1,4
Картон строительный многослойный 0,13
Каучук вспененный 0,03
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,2
Кирпич кремнеземный 0,15
Кирпич пустотелый 0,44
Кирпич силикатный 0,81
Кирпич сплошной 0,67
Кирпич шлаковый 0,58
Кремнезистые плиты 0,07
Опилки - засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,19
Пенобетон 0,3
Пенопласт 0,037
Пенополистирол ПС-Б 0,04
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,06
Пеностекло тяжелое 0,08
Пергамин 0,17
Перлит 0,05
Перлито-цементные плиты 0,08
Песок
0% влажности 0,33
10% влажности 0,97
20% влажности 1,33
Песчаник обожженный 1,5
Плитка облицовочная 105
Плитка термоизоляционная 0,036
Полистирол 0,082
Поролон 0,04
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,05
Резина 0,15
Рубероид 0,17
Сосна обыкновенная, ель, пихта (450...550 кг/куб.м, 15% влажности) 0,15
Сосна смолистая (600...750 кг/куб.м, 15% влажности) 0,23
Стекло 1,15
Стекловата 0,05
Стекловолокно 0,036
Стеклотекстолит 0,3
Толь бумажный 0,23
Цементные плиты 1,92
Цемент-песок раствор 1,2
Чугун 56
Шлак гранулированный 0,15
Шлак котельный 0,29
Шлакобетон 0,6
Штукатурка сухая 0,21
Штукатурка цементная 0,9
Эбонит 0,16
Эбонит вспученный 0,03
Липа, береза, клен, дуб (15% влажности) 0,15

Отправим материал вам на e-mail

Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

Особенности теплопроводности готового строения

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из , бетона и камня дополнительно утеплять.

Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

Разновидности утепления конструкций

Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

Как определить коэффициенты теплопроводности строительных материалов: таблица

Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

На верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

Одной из важнейших характеристик бетона, безусловно, является его теплопроводность. Меняться этот показатель у разных видов материала может в значительных пределах. Зависит п режде всего, от вида использованного в нем наполнителя. Чем легче материал, тем лучшим изолятором от холода он является.

Что такое теплопроводность: определение

При возведении зданий и сооружений могут использоваться разные материалы. Жилые и производственные постройки в условиях российского климата обычно утепляются. То есть, при их строительстве применяются специальные изоляторы, основным назначением которых является поддержание комфортной температуры внутри помещений. При расчете необходимого количества минеральной ваты или пенополистирола в обязательном порядке принимается во внимание теплопроводность использованного для возведения ограждающих конструкций основного материала.

Очень часто здания и сооружения в нашей стране строятся из разных видов бетона. Также для этой цели использу ю тся кирпич и дерево. Собственно самой теплопроводностью называется способность вещества к переносу энергии в своей толще в силу движения молекул. Идти подобный процесс может, как в твердых частях материала, так и в его порах. В первом случае он называется кондукцией, во втором — конвекцией. Остывание материала гораздо быстрее идет в его твердых частях. Воздух, заполняющий поры, задерживает тепло, конечно же, лучше.

От чего зависит показатель

Выводы из всего вышесказанного можно сделать следующие. Зависит т еплопроводность бетона, дерева и кирпича, как и любого другого материала, от их :

  • плотности;
  • пористости;
  • влажности.

С увеличением повышается и степень его теплопроводности. Чем больше в материале пор, тем лучшим изолятором от холода он является.

Виды бетона

В современном строительстве могут использоваться самые разные типы этого материала. Однако все существующие на рынке бетоны можно классифицировать на две большие группы:

  • тяжелые;
  • легкие пенистые или с пористым наполнителем.

Теплопроводность тяжелого бетона: показатели

Такие материалы также делятся на две основные группы. В строительстве могут использоваться бетоны:

  • тяжелые;
  • особо тяжелые.

При производстве второй разновидности материала применяются такие наполнители, как металлический скрап, гематит, магнетит, барит. Используются особо тяжелые бетоны обычно только при строительстве объектов, основным назначением которых является защита от радиации. В эту группу входят материалы с плотностью от 2500 кг/м 3 .

Обычные тяжелые бетоны изготавливают с применением таких видов наполнителя, как гранит, диабаз или известняк, изготовленные на базе горного щебня. В строительстве зданий и сооружений используется подобный 1600-2500 кг/м 3 .

Какая же может быть в данном случае теплопроводность бетона? Таблица, представленная ниже, демонстрирует показатели, характерные для разных типов тяжелого материала.

Теплопроводность ячеистого бетона легкого

Такой материал также классифицируется на две основные разновидности. Очень часто в строительстве используются бетоны на основе пористого наполнителя. В качестве последнего применяется керамзит, туф, шлак, пемза. Во второй группе легких бетонов наполнитель используется обычный. Но в процессе замеса такой материал вспенивается. В результате после созревания в нем остается много пор.

Т еплопроводность бетона легкого очень низкая. Но при этом и по прочностным характеристикам такой материал тяжелому уступает . Используют легкие бетоны чаще всего для возведения разного рода жилых и хозяйственных построек, не подвергающихся серьезным нагрузкам.

Классифицируют не только по способу изготовления, но и по назначению. В этом плане существуют материалы:

  • теплоизоляционные (с плотностью до 800 кг/м3);
  • конструкционно-теплоизоляционные (до 1400 кг/м3);
  • конструкционные (до 1800 кг/м3).

Теплопроводность ячеистого бетона легкого разных видов представлена в таблице.

Теплоизоляционные материалы

Такие обычно используют для обкладки стен, собранных из кирпича или залитых из цементного раствора. Как видно из таблицы, теплопроводность бетон а этой группы может варьироваться в достаточно большом диапазоне.

Бетоны этой разновидности чаще всего используются как утепляющие материалы. Но иногда из них возводят и разного рода незначимые ограждающие конструкции.

Конструкционно-теплоизоляционные и конструкционные материалы

Из этой группы в строительстве чаще всего используются пенобетон, шлакопемзобетон, шлакобетон. Некоторые типы керамзитобетона плотностью свыше 0,29 Вт/(м°С) также могут быть отнесены к этой разновидности.

Очень часто такой бетон с низкой теплопроводностью используется непосредственно в качестве строительного материала. Но иногда его применяют и как изолятор, не пропускающий холода.

Как зависит теплопроводность от влажности

Всем известно, что практически любой сухой материал изолирует от холода гораздо лучше влажного. Связано это, прежде всего, с очень низкой степенью теплопроводности воды. Защищают бетонные стены, полы и потолки помещения от пониженных уличных температур , как мы выяснили, в основном благодаря наличию в материале пор, заполненных воздухом. При намокании последний вытесняется водой. А, следовательно, и значительно повышается В холодное время года попавшая в поры материала вода замерзает. Результатом становится то, что теплосохраняющие качества стен, пола и потолков снижаются еще больше.

Степень влагопроницаемости у разных видов бетона может быть неодинаковой. По этому показателю материал классифицируются на несколько марок.

Дерево как изолятор

И «холодный» тяжелый, и легкий бетон, теплопроводность к оторого низкая, конечно же, очень популярны е и востребованные вид ы строител ьных материал ов . В любом случае, фундаменты большинства зданий и сооружений возводятся именно из цементного раствора в смеси с щебнем или бутовым камнем .

Применяют б етонную смесь или же изготовленные из нее блоки и для возведения ограждающих конструкций. Но достаточно часто для сборки пола, потолков и стен используются и другие материалы, к примеру, дерево. Брус и доска отличаются, конечно же, гораздо меньшей прочностью, чем бетон. Однако и степень теплопроводности у дерева, разумеется, намного ниже. У бетона этот показатель, как мы выяснили, составляет 0,12-1,74 Вт/(м°С). У дерева коэффициент теплопроводности зависит, в том числе и от данной конкретной породы.

У других пород этот показатель может быть иным. Считается, что в среднем теплопроводность древесины поперек волокон равна 0,14 Вт/(м°С) . Лучше всего изолирует пространство от холода кедр. Его показатель теплопроводности составляет всего 0,095 Вт/(м С).

Кирпич как изолятор

Далее для сравнения рассмотрим характеристики в отношении теплопроводности и этого популярного строительного материала. По прочностным качествам кирпич не только не уступает бетону, но зачастую и превосходит его. То же самое касается и плотности этого строительного камня. Весь используемый сегодня при возведении зданий и сооружений кирпич к лассифицируется на керамический и силикатный.

Обе этих разновидности камня в свою очередь могут быть:

  • полнотелыми;
  • с пустотами;
  • щелевыми .

Конечно же, полнотелые кирпичи задерживают тепло хуже пустотных и щелевых.

Теплопроводность бетона и кирпича, т аким образом, практически одинакова. Как силикатный, так и изолируют помещения от холода довольно-таки слабо. Поэтому дома, возведенные из такого материала, следует дополнительно утеплять. В качестве изоляторов при обшивке кирпичных стен так же, как и залитых из обычного тяжелого бетона, чаще всего применяются пенополистирол или минеральная вата. Можно использовать для этой цели и пористые блоки.

Как рассчитывается коэффициент теплопроводности

Определяется этот показатель у разных материалов, в том числе и у бетона, по специальным формулам. Всего может быть использовано две методики. Теплопроводность бетона определяется по формуле Кауфмана. Выглядит она следующим образом:

    0,0935х(m) 0,5х2,28m + 0,025, где m — масса раствора.

Для влажных (более 3%) растворов используется формула Некрасова: (0,196 + 0,22 m2) 0,5 - 0,14.

К ерамзитобетон плотностью 1000 кг/м3 имеет массу 1 кг. Соответственно, к примеру, по Кауфману в данном случае получится коэффициент 0,238. Определяется теплопроводность бетонов при температуре смеси С. У холодных и разогретых материалов ее показатели могут немного меняться.


Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Теплопроводность материалов влияет на толщину стен

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

В качестве утеплителей применяются следующие виды:

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)


Возможно Вам также будет интересно:

Как сделать отопление в частном доме из полипропиленовых труб своими руками Гидрострелка: назначение, принцип работы, расчеты Схема отопления с принудительной циркуляцией двухэтажного дома – решение проблемы с теплом

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 - 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 - 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 - 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 - 400 кг/м3 0,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 - 220 кг/м3 0,057-0,063
Пеноблок 221 - 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотность Коэффициент теплопроводности
в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Наименование Коэффициент теплопроводности
В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Название Коэффициент теплопроводности Название Коэффициент теплопроводности
Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.