Как удобрения влияют на почву. Воздействие удобрений на окружающую среду

Разные биогенные элементы, попадая в почву с удобрениями, претерпевают существенные превращения. Одновременно они оказывают значительное влияние на плодородие почвы.

Да и свойства почвы, в свою очередь, могут оказывать на вносимые удобрения как позитивное, так и негативное влияние. Эта взаимосвязь удобрений и почвы является весьма сложной и требует глубоких и обстоятельных исследований. С превращениями удобрений в почве связаны и различные источники их потерь. Эта проблема представляет собой одну из основных задач агрохимической науки. Р. Kundler et al. (1970) в общем виде показывают следующие возможные превращения различных химических соединений и связанные с ними потери питательных элементов путем вымывания, улетучивания в газообразной форме и закрепления в почве.

Вполне понятно, что это лишь некоторые показатели превращения различных форм удобрений и питательных элементов в почве, они еще далеко не охватывают многочисленные пути превращения различных минеральных удобрений в зависимости от типа и свойств почвы.

Поскольку почва является важным звеном биосферы, она прежде всего подвергается сложному комплексному воздействию вносимых удобрений, которые могут оказывать следующее влияние на почву: вызывать подкисление или подщелачивание среды; улучшать или ухудшать агрохимические и физические свойства почвы; способствовать обменному поглощению ионов или вытеснять их в почвенный раствор; способствовать пли препятствовать химическому поглощению катионов (биогенных и токсических элементов); способствовать минерализации или синтезу гумуса почвы; усиливать или ослаблять действие других питательных элементов почвы или удобрений; мобилизовать или иммобилизовать питательные элементы почвы; вызывать антагонизм или синергизм питательных элементов и, следовательно, существенно влиять на их поглощение и метаболизм в растениях.

В почве может быть сложное прямое или косвенное взаимовлияние между биогенными токсичными элементами, макро — и микроэлементами, а это оказывает значительное влияние на свойства почвы, рост растений, их продуктивность и качество урожая.

Так, систематическое применение физиологически кислых минеральных удобрений на кислых дерново-подзолистых почвах повышает их кислотность и ускоряет вымывание из пахотного слоя кальция и магния и, следовательно, увеличивает степень ненасыщенности основаниями, снижая почвенное плодородие. Поэтому на таких ненасыщенных почвах применение физиологически кислых удобрений необходимо сочетать с известкованием почвы и нейтрализацией вносимых минеральных удобрений.

Двадцатилетнее применение удобрений в Баварии на иловатой, плохо дренированной почве в сочетании с известкованием под травы привело к повышению pH с 4,0 до 6,7. В поглощаемом комплексе почвы обменный алюминий заменился кальцием, что привело к значительному улучшению свойств почвы. Потери же кальция в результате выщелачивания составили 60-95% (0,8-3,8 ц/га в год). Как показали расчеты, ежегодная потребность в кальции составила 1,8-4 ц/га. В этих опытах урожай сельскохозяйственных растений хорошо коррелировал со степенью насыщенности почвы основаниями. Авторы пришли к выводу, что для получения высокого урожая необходимы pH почвы >5,5 и высокая степень насыщенности основаниями (V = 100%); при этом удаляется обменный алюминий из зоны наибольшего размещения корневой системы растений.

Во Франции выявлено большое значение кальция и магния в повышении плодородия почв и улучшении их свойств. Установлено, что выщелачивание приводит к обеднению запаса кальция и магния

в почве. В среднем ежегодные потери кальция составляют 300 кг/га (200 кг на кислой почве и 600 кг на карбонатной), а магния - 30 кг/га (на песчаных почвах они достигали 100 кг/га). Кроме того, некоторые культуры севооборота (бобовые, технические и др.) выносят значительные количества кальция и магния из почвы, поэтому следующие за ними зерновые культуры часто обнаруживают симптомы недостаточности этих элементов. Не нужно забывать также, что кальций и магний выполняют роль физико-химических мелиорантов, оказывая благоприятное влияние на физические и химические свойства почвы, а также на ее микробиологическую деятельность. Это косвенно влияет на условия минерального питания растений другими макро — и микроэлементами. Для поддержания плодородия почвы необходимо восстановление уровня содержания кальция и магния, потерянных в результате выщелачивания и выноса из почвы сельскохозяйственными культурами; для этого ежегодно следует вносить 300-350 кг CaO и 50-60 кг MgO на 1 га.

Задача заключается не только в восполнении потерь этих элементов вследствие выщелачивания и выноса сельскохозяйственными культурами, но и в восстановлении плодородия почвы. В этом случае нормы внесения кальция и магния зависят от первоначального значения pH, содержания в почве MgO и фиксирующей способности почвы, т. е. прежде всего от содержания в ней физической глины и органического вещества. Подсчитано, что для повышения pH почвы на одну единицу нужно внести извести от 1,5 до 5 т/га, в зависимости от содержания физической глины (<10% - >30%), Чтобы повысить содержание магния в пахотном слое почвы на 0,05%, нужно внести 200 кг MgO/га.

Очень важно установить правильные дозы извести в конкретных условиях ее применения. Этот вопрос не настолько прост, как часто его представляют. Обычно дозы извести устанавливают в зависимости от степени кислотности почвы и насыщенности ее основаниями, а также разновидности почвы. Эти вопросы требуют дальнейшего, более глубокого изучения в каждом конкретном случае. Важен вопрос о периодичности внесения извести, дробности внесения в севообороте, сочетании известкования с фосфоритованием и внесением других удобрений. Установлена необходимость в опережающем известковании как условии для повышения эффективности минеральных удобрений на кислых почвах таежно-лесной и лесостепной зон. Известкование существенно влияет на подвижность макро — и микроэлементов внесенных удобрений и самой почвы. А это сказывается на продуктивности сельскохозяйственных растений, качестве продуктов питания и кормов, а следовательно, на здоровье человека и животных.

М. Р. Sheriff (1979) считает, что о возможном переизвестковании почв можно судить по двум уровням: 1) когда продуктивность пастбищ и животных не повышается при дополнительном внесении извести (это автор называет максимальным экономическим уровнем) и 2) когда известкование нарушает баланс питательных веществ в почве, и это отрицательно сказывается на продуктивности растений и здоровье животных. Первый уровень на большей части почв наблюдается при pH около 6,2. На торфяных почвах максимальный экономический уровень отмечается при pH 5,5. Некоторые пастбища на легких вулканических почвах не обнаруживают каких-либо признаков отзывчивости на известь при их природной величине pH 5,6.

Необходимо строго учитывать требования возделываемых культур. Так, чайный куст предпочитает кислые красноземы и желтоземно-подзолистые почвы, известкование угнетает эту культуру. Внесение извести отрицательно влияет на лен, картофель (подробности ) и другие растения. Наиболее хорошо отзываются на известь бобовые культуры, которые угнетаются на кислых почвах.

Проблема же продуктивности растений и здоровья животных (второй уровень) чаще всего возникает при рН = 7 и более. Кроме того, почвы различаются по скорости и степени отзывчивости на известь. Например, согласно М. Р. Sheriff (1979), чтобы изменить pH с 5 до 6 для легких почв, ее требуется около 5 т/га, а для тяжелой глинистой почвы в 2 раза большее количество. Важно учитывать также содержание карбоната кальция в известковом материале, а также рыхлость породы, тонину ее помола и т. д. С агрохимической точки зрения весьма важно учитывать мобилизацию и иммобилизацию макро — и микроэлементов в почве под действием известкования. Установлено, что известь мобилизует молибден, который в избыточных количествах может отрицательно влиять на рост растений и здоровье животных, но одновременно наблюдаются симптомы недостаточности меди у растений и скота.

Применение удобрений может не только мобилизовывать отдельные питательные элементы почвы, но и связывать их, превращая в недоступную для растений форму. Исследования, проведенные в нашей стране и за рубежом, показывают, что одностороннее использование высоких доз фосфорных удобрений часто значительно снижает содержание подвижного цинка в почве, вызывая цинковое голодание растений, что отрицательно сказывается на количестве и качестве урожая. Поэтому применение высоких доз фосфорных удобрений часто вызывает необходимость внесения цинкового удобрения. Больше того, внесение одного фосфорного или цинкового удобрения может не дать эффекта, а совместное их применение привести к значительному положительному их взаимодействию.

Можно привести немало примеров, свидетельствующих о положительном и отрицательном взаимодействии макро- и микроэлементов. Во Всесоюзном научно-исследовательском институте сельскохозяйственной радиологии изучали влияние минеральных удобрений и известкования почвы доломитом на поступления радионуклида стронция (90 Sr) в растения. Содержание 90 Sr в урожае ржи, пшеницы и картофеля под влиянием полного минерального удобрения снижалось в 1,5-2 раза по сравнению с неудобренной почвой. Наименьшее содержание 90 Sr в урожае пшеницы было в вариантах с высокими дозами фосфорных и калийных удобрений (N 100 P 240 K 240), а в клубнях картофеля - при внесении высоких доз калийных удобрений (N 100 P 80 K 240). Внесение доломита снизило накопление 90 Sr в урожае пшеницы в 3-3,2 раза. Внесение полного удобрения N 100 P 80 K 80 на фоне известкования доломитом уменьшало накопление радиостронция в зерне и соломе пшеницы в 4,4-5 раз, а при дозе N 100 P 240 K 240 - в 8 раз по сравнению с содержанием без известкования.

Ф. А. Тихомиров (1980) указывает на четыре фактора, влияющие на размеры выноса радионуклидов из почв урожаем растений: биогеохимические свойства техногенных радионуклидов, свойства почвы, биологические особенности растений и агрометеорологические условия. Например, из пахотного слоя типичных почв европейской части СССР выводится в результате миграционных процессов 1-5% содержащегося в нем 90 Sr и до 1 % 137 Cs; на легких почвах скорость удаления радионуклидов из верхних горизонтов существенно выше, чем на тяжелых. Лучшая обеспеченность растений питательными элементами и их оптимальное соотношение снижают поступление радионуклидов в растения. Культуры с глубоко проникающими корневыми системами (люцерна) меньше накапливают радионуклидов, чем с поверхностными корневыми системами (райграс).

На основе экспериментальных данных в лаборатории радиоэкологии МГУ научно обоснована система агромероприятий, реализация которых существенно снижает поступление радионуклидов (стронция, цезия и др.) в продукцию растениеводства. Эти мероприятия включают: разбавление поступающих в почву радионуклидов в виде практически невесомых примесей их химическими аналогами (кальций, калий и др.); уменьшение степени доступности радионуклидов в почве внесением веществ, переводящих их в менее доступные формы (органическое вещество, фосфаты, карбонаты, глинистые минералы); заделка загрязненного слоя почвы в подпахотный горизонт за пределы зоны распространения корневых систем (на глубину 50-70 см); подбор культур и сортов, накапливающих минимальные количества радионуклидов; размещение на загрязненных почвах технических культур, использование этих почв под семенные участки.

Эти мероприятия могут быть использованы и для снижения загрязнения сельскохозяйственной продукции и токсическими веществами нерадиоактивной природы.

Исследованиями Е. В. Юдинцевой и др. (1980) также установлено, что известковые материалы снижают накопление 90 Sr из дерново-подзолистой супесчаной почвы в зерне ячменя примерно в 3 раза. Внесение повышенных доз фосфора на фоне доменных шлаков снижало содержание 90 Sr в соломе ячменя в 5-7 раз, в зерне - в 4 раза.

Под влиянием известковых материалов содержание цезия (137 Cs) в урожае ячменя снижалось в 2,3-2,5 раза по сравнению с контролем. При совместном внесении высоких доз калийных удобрений и доменных шлаков содержание 137 Cs в соломе и зерне снижалось в 5-7 раз по сравнению с контролем. Действие извести и шлаков на уменьшение накопления радионуклидов в растениях более резко выражено на дерново-подзолистой почве, чем на серой лесной.

Исследованиями ученых США установлено, что при использовании для известкования Ca(OH) 2 токсичность кадмия снижалась в результате связывания его ионов, применение же для известкования CaCO 3 было неэффективным.

В Австралии изучали влияние двуокиси марганца (MnO 2) на поглощение свинца, кобальта, меди, цинка и никеля растениями клевера. Установлено, что при добавлении в почву двуокиси марганца сильнее снижалось поглощение свинца и кобальта и в меньшей степени никеля; на поглощение же меди и цинка MnO 2 оказывала незначительное влияние.

В США также были проведены исследования по влиянию различного содержания свинца и кадмия в почве на поглощение кукурузой кальция, магния, калия и фосфора, а также на сухую массу растений.

Из данных таблицы видно, что кадмий оказывал негативное влияние на поступление всех элементов в 24-дневные растения кукурузы, а свинец замедлял поступление магния, калия и фосфора. Кадмий также отрицательно влиял на поступление всех элементов в 31-дневные растения кукурузы, а свинец оказывал положительное действие на концентрацию кальция и калия и отрицательное - на содержание магния.

Эти вопросы имеют важное теоретическое и практическое значение, особенно для земледелия в индустриально развитых районах, где увеличивается накопление ряда микроэлементов, в том числе и тяжелых металлов. В то же время возникает необходимость в более глубоком изучении механизма взаимодействия различных элементов на поступление их в растение, на формирование урожая и качество продукции.

В университете штата Иллинойс (США) также изучали влияние взаимодействия свинца и кадмия на поглощение их растениями кукурузы.

У растений отмечена определенная тенденция повышать поглощение кадмия в присутствии свинца; почвенный кадмий, наоборот, снижал поглощение свинца в присутствии кадмия. Оба металла в испытанных концентрациях подавляли вегетативный рост кукурузы.

Представляют интерес выполненные в ФРГ исследования по влиянию хрома, никеля, меди, цинка, кадмия, ртути и свинца на поглощение фосфора и калия яровым ячменем и перемещение этих питательных элементов в растении. В исследованиях были использованы меченые атомы 32 Р и 42 К. Тяжелые металлы в питательный раствор добавляли в концентрации от 10 -6 до 10 -4 мол/л. Установлено значительное поступление тяжелых металлов в растение с повышением их концентрации в питательном растворе. Все металлы оказывали (в разной мере) ингибирующее действие как на поступление фосфора и калия в растения, так и на перемещение их в растении. Ингибирующее действие на поступление калия проявлялось в большей мере, чем фосфора. Кроме того, перемещение обоих питательных элементов в стебли подавлялось сильнее, чем поступление в корни. Сравнительное действие металлов на растение происходит в следующем нисходящем порядке: ртуть → свинец → медь → кобальт → хром → никель → цинк. Этот порядок соответствует электрохимическому ряду напряжений элементов. Если действие ртути в растворе отчетливо проявлялось уже при концентрации 4∙10 -7 мол/л (= 0,08 мг/л), то действие цинка - только при концентрации выше 10 -4 мол/л (=6,5 мг/л).

Как уже отмечалось, в индустриально развитых районах происходит накопление в почве различных элементов, в том числе тяжелых металлов. Вблизи крупных автострад Европы и Северной Америки весьма ощутимо влияние на растения соединений свинца, поступающих в воздух и почву с выхлопными газами. Часть соединений свинца попадает через листья в ткани растений. Многочисленными исследованиями установлено повышенное содержание свинца в растениях и почве на расстоянии до 50 м в сторону от автострад. Отмечены случаи отравления растений в местах особенно интенсивного воздействия выхлопных газов, например елей на расстоянии до 8 км от крупного Мюнхенского аэропорта, где производится около 230 вылетов самолетов в день. В хвое ели содержалось свинца в 8-10 раз больше, чем в хвое в незагрязненных районах.

Соединения других металлов (меди, цинка, кобальта, никеля, кадмия и др.) заметно влияют на растения вблизи металлургических предприятий, поступая как из воздуха, так и из почвы через корни. В таких случаях особенно важно изучение и внедрение приемов, предотвращающих избыточные поступления токсических элементов в растения. Так, в Финляндии определяли содержание свинца, кадмия, ртути, меди, цинка, марганца, ванадия и мышьяка в почве, а также салате, шпинате и моркови, выращиваемых вблизи промышленных объектов и автострад и на чистых участках. Исследовали также дикорастущие ягоды, грибы и луговые травы. Установлено, что в зоне действия промышленных предприятий содержание свинца в салате колебалось от 5,5 до 199 мг/кг сухой массы (фон 0,15-3,58 мг/кг), в шпинате - от 3,6 до 52,6 мг/кг сухой массы (фон 0,75-2,19), в моркови - 0,25-0,65 мг/кг. Содержание свинца в почве составило 187-1000 мг/кг (фон 2,5-8,9). Содержание свинца в грибах достигало 150 мг/кг. По мере удаления от автострад содержание свинца в растениях снижалось, например, в моркови с 0,39 мг/кг на расстоянии 5 м до 0,15 мг/кг на расстоянии 150 м. Содержание кадмия в почве менялось в пределах 0,01-0,69 мг/кг, цинка - 8,4-1301 мг/кг (фоновые концентрации соответственно были 0,01-0,05 и 21,3-40,2 мг/кг). Интересно заметить, что известкование загрязненной почвы снижало содержание кадмия в салате с 0,42 до 0,08 мг/кг; калийные же и магниевые удобрения не оказывали на него заметного влияния.

В зонах сильного загрязнения содержание цинка в травах было высокое - 23,7-212 мг/кг сухой массы; содержание мышьяка в почве 0,47-10,8 мг/кг, в салате - 0,11-2,68, шпинате - 0,95-1,74, моркови - 0,09-2,9, лесных ягодах - 0,15-0,61, грибах - 0,20-0,95 мг/кг сухого вещества. Содержание ртути в окультуренных почвах было 0,03-0,86 мг/кг, в лесных почвах - 0,04-0,09 мг/кг. Заметных различий в содержании ртути в разных овощах не обнаружено.

Отмечается действие известкования и затопления полей на снижение поступления кадмия в растения. Например, содержание кадмия в верхнем слое почвы рисовых полей в Японии составляет 0,45 мг/кг, а его содержание в рисе, пшенице и ячмене на незагрязненной почве соответственно 0,06 мг/кг, 0,05 и 0,05 мг/кг. Наибольшей чувствительностью к кадмию отличается соя, у которой снижение роста и массы зерен происходит при содержании в почве кадмия 10 мг/кг. Накопление же кадмия в растениях риса в количестве 10-20 мг/кг вызывает подавление их роста. В Японии ПДК кадмия в зерне риса - 1 мг/кг.

В Индии существует проблема токсичности меди вследствие большого накопления ее в почвах, расположенных около медных рудников в Бихаре. Токсичный уровень цитрат ЭДТА-Си > 50 мг/кг почвы. Ученые Индии изучали также влияние известкования на содержание меди в дренажной воде. Нормы извести были 0,5, 1 и 3 от требуемой для известкования. Исследования показали, что известкование не решает проблему токсичности меди, поскольку 50-80% выпавшей в осадок меди оставалось в доступной для растений форме. Содержание доступной меди в почвах зависело от нормы известкования, первоначального содержания меди в дренажной воде и свойств почвы.

Исследованиями установлено, что типичные симптомы недостаточности цинка наблюдались у растений, выращиваемых в питательной среде, содержащей этого элемента 0,005 мг/кг. Это приводило к подавлению роста растений. В то же время цинковая недостаточность у растений способствовала значительному увеличению адсорбции и транспорта кадмия. С повышением концентрации цинка в питательной среде поступление кадмия в растения резко снижалось.

Большой интерес представляет изучение взаимодействия отдельных макро — и микроэлементов в почве и в процессе питания растений. Так, в Италии изучали влияние никеля на поступление фосфора (32 Р) в нуклеиновые кислоты молодых листьев кукурузы. Опыты показали, что низкая концентрация никеля стимулировала, а высокая подавляла рост и развитие растений. В листьях растений, выращиваемых при концентрации никеля 1 мкг/л, поступление 32 Р во все фракции нуклеиновых кислот было более интенсивное, чем на контроле. При концентрации никеля 10 мкг/л поступление 32 Р в нуклеиновые кислоты заметно снижалось.

Из многочисленных данных исследований можно сделать вывод, что для предотвращения отрицательного влияния удобрений на плодородие и свойства почвы научно обоснованная система удобрения должна предусматривать недопущение или ослабление возможных негативных явлений: подкисления или подщелачивания почвы, ухудшения агрохимических ее свойств, необменного поглощения биогенных элементов, химического поглощения катионов, чрезмерной минерализации гумуса почвы, мобилизации повышенного количества элементов, приводящей к токсическому их действию и т. д.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В наше время разведение овощных и плодо - ягодных культур без минеральных удобрений тяжело представить. Ведь все они оказывают положительное влияние на растения, без которых трудно представить себе их нормальный рост. Даже ярые противники минеральных удобрений, признают, что они оказывают оптимальное воздействие на на саженцы и не вредят почве.

Конечно, если минудобрения высыпать на малый участок большими биг - бэгами, никакого разговора об их пользе идти не может, но если соблюдать все правила и технологии то обязательно все получится. В этой статье Вы узнаете о влиянии некоторых минеральных соединений на растения, ведь каждое из них применятся в разных случаях.

Начнем с влияния азотных удобрений на растения. Во - первых азот является одни из главных элементов, которые влияют на рост саженца. Их советуют использовать, внося непосредственно в грунт при весенней вспашке в виде мочевины (карбамида) или аммиачной кислоты. Отметим, что азотные удобрения в большом количестве перевозят в специальных биг - бэгах.

Когда же нужно применять азотные удобрения?

Они применяются тогда, когда имеется недостаток азота в растениях. Определить недостаток азота очень просто. Листья растений стают желтыми или бледно - зелеными.

Главные преимущества азотных удобрений:

1) Их можно эксплуатировать на разных почвах;

2) Они удобрения создают условия для быстрого роста растения;

3) Они удобрения улучшают качество плодов.


Теперь мы расскажем о воздействии соединений калия на саженцы. Калий является элементом, который влияет на урожайность, на стойкость к засухе и на стойкость к низким температурам. Узнать, что растению не хватает калия, также просто как узнать, что растению не хватает азота. Признаком того, что растению не хватает калия, являются белые каемки по краю листочка, низкая упругость листочка. При использовании калийных удобрений растения быстро оживляются и растут.

При использовании калийных солей нужно помнить о правилах и технологиях их применения и не допускать злоупотребления, ведь минеральные удобрения нужно вносить только тогда, когда нужно. Также не стоит забывать о том, что почве нужно давать отдохнуть.

Если Вам интересны познавательные статьи, и Вы хотите быть в курсе последних событий в мире агрономии переходите на наш сайт: https://forosgroup.com.ua .

Также читайте нас в телеграмме: https://t.me/forosgroup

Для роста и развития растений необходимы питательные вещества. Часть из них зеленые насаждения получают непосредственно из почвы, а часть извлекают из минеральных удобрений. Искусственная минерализация почвы позволяет получать большие урожаи, но безопасна ли она? Однозначного ответа на этот вопрос современным селекционерам пока получить не удалось, но исследования в этой области продолжаются.

Польза или вред?

Многие минеральные удобрения считаются вредными для здоровья человека, а впитавшие их растения, едва ли не ядовитыми. В действительности данное утверждение – это не что иное, как устоявшийся стереотип, базирующийся на отсутствии агротехнических знаний.

Важно! Разница между органикой и минеральными удобрениями состоит вовсе не в пользе или вреде, а в скорости усвоения.

Органические удобрения усваиваются медленно. Чтобы растение смогло получить из органики необходимые ему вещества, она должна разложиться. В этом процессе участвует микрофлора почвы, что значительно замедляет его. От момента внесения натуральных подкормок в почву и до начала использования их растениями проходят недели и даже месяцы.

Минеральные удобрения поступают в почву уже в готовом виде. Растения получают к ним доступ сразу же после внесения. Это оказывает положительное воздействие на скорость роста и позволяет собрать хороший урожай даже там, где при обычных условиях подобное невозможно. К сожалению, на этом положительные стороны использования минеральных подкормок в большинстве случаев заканчиваются.

Неправильное применение их может привести к:

  • исчезновению из почвы участвующих в естественном процессе разложения бактерий;
  • загрязнению грунтовых вод и атмосферы (в загрязнении участвуют отельные компоненты минеральных удобрений, вымытые из почвы до их усвоения растениями);
  • изменению кислотности почв;
  • накоплению в почве нетипичных для естественной среды соединений;
  • вымыванию из почвы полезных катионов;
  • снижению количества гумуса в почве;
  • уплотнению грунта;
  • эрозии.

Умеренное количество минералов в почве полезно для растений, но многие овощеводы используют больше удобрений, чем нужно. Такое нерациональное использование приводит к насыщению минералами не только корня и стебля, но и той части растения, которая предназначена для употребления в пищу.

Важно! Нетипичные для растения соединения воздействуют на здоровье, провоцируют развитие болезней.

Пестициды и ядохимикаты

Чтобы растение быстро росло и развивалось, внесенных в почву удобрений бывает недостаточно. Получить хороший урожай можно лишь защитив его от вредителей. С этой целью фермеры используют различные пестициды и ядохимикаты. Необходимость их применения возникает в случае:

  • отсутствия естественных средств для борьбы с нашествием насекомых (поля обрабатывают против саранчи, мотыльков и т.д.);
  • заражения растений опасными грибками, вирусами и бактериями.

Пестициды и ядохимикаты используют для борьбы с сорными травами, грызунами и другими вредителями. Химические вещества подбирают таким образом, чтобы они оказывали воздействие исключительно на конкретных грызунов, разновидность сорняков или вредителей. Культурные растения, подвергшиеся обработке вместе с сорняками, отрицательного воздействия химических веществ не испытывают. Обработка никак не отражается на их внешнем облике, но пестициды и ядохимикаты откладываются в почве и вместе с минералами сначала проникают в само растение, а оттуда и в человека, его употребившего.

К сожалению, химическая обработка полей в большинстве случаев является единственным способом получения хорошего урожая. Значительные посевные площади не оставляют альтернативных способов решения проблемы. Единственным выходом из ситуации является отслеживание количества и качества используемых пестицидов. С этой целью созданы специальные службы.

Негативное влияние

Наибольший вред окружающей среде и человеку наносят различные аэрозоли и газы, распыленные над большими территориями. Неправильное применение ядохимикатов и удобрений чревато серьезными последствиями. При этом негативное воздействие может проявиться спустя годы и десятилетия.

Влияние на человека

При использовании удобрений и ядохимикатов необходимо придерживаться инструкции. Несоблюдение правил внесения подкормок и химических веществ может привести к отравлению не только самого овоща, но и человека. Так, если в почву попала необоснованно высокая доза азота, при минимальном содержании в ней фосфора, калия и молибдена, в растениях начинают скапливаться опасные для организма человека нитраты.

Богатые нитратами овощи и фрукты воздействуют на желудочно-кишечный тракт, увеличивают риск развития онкологических заболеваний. Под воздействием большого количества химикатов и удобрений биохимический состав продуктов питания видоизменяется. Витамины и полезные вещества практически полностью из них исчезают, им на смену приходят опасные нитриты.

Человек, регулярно употребляющий овощи и фрукты, обработанные химикатами и выращенные исключительно на минеральных удобрениях, часто жалуется на головную боль, учащенное сердцебиение, онемение мышц, нарушения в работе зрения и слуха. Наибольший вред такие овощи и фрукты наносят беременным женщина и детям. Переизбыток токсинов в организме новорожденного может иметь непредсказуемые последствия.

Воздействие на почву

Как уже говорилось выше, минеральные удобрения и химикаты негативно воздействуют, прежде всего, на почву. Неправильное использование их приводит к истощению почвенного слоя, изменению структуры грунта, эрозиям. Так, попавший в грунтовые воды азот провоцирует рост растительности. В воде накапливаются органические вещества, уменьшается количество кислорода, начинается заболачивание, из-за чего ландшафт в этой местности может необратимо видоизмениться. Насыщенные минералами и ядами почвы могут иссушиться, плодородные черноземы перестают давать высокие урожаи, на менее плодородных почвах и вовсе ничего, кроме сорняков, не растет.

Влияние на окружающую среду

Негативное воздействие оказывают не только удобрения, но и процесс их производства. Земли, на которых испытывают новые виды удобрений, быстро выщелачиваются, теряют естественный плодородный слой. Перевозка и хранение химии не менее опасны. Контактирующие с ними люди обязаны использовать перчатки и респираторы. Хранить удобрения нужно в специально отведенном для этого месте, куда не будет доступа детям и домашним животным. Не соблюдение простых мер предосторожности может спровоцировать настоящую экологическую катастрофу. Так, некоторые ядохимикаты способны вызвать массовое опадение листвы с деревьев и кустарников, увядание травянистой растительности.

Чтобы использовать минеральные удобрения без последствий для окружающей среды, почв и здоровья, фермеры должны придерживаться следующих правил:

  • органические удобрения применяют всюду, где это возможно (современная органика – это не полная, но достаточно хорошая замена минеральным удобрениям);
  • перед использованием удобрений читают инструкцию (при выборе их особое внимание уделяется составу почв, качеству самих удобрений, сорту и виду выращиваемой культуры);
  • подкормку сочетают с мероприятиями по подкислению грунта (вместе с минералами вносят известь или древесную золу);
  • используют лишь те удобрения, в составе которых содержится минимальное количество вредных добавок;
  • сроки и дозу внесения минералов не нарушают (если подкормка азотом должна производиться в первых числах мая, то использовать это удобрение в начале июня может быть неправильно и даже опасно).

Важно! Для минимизации отрицательного эффекта от использования ненатуральных подкормок фермеры чередуют их с органическими веществами, что помогает снизить уровень нитратов и уменьшить риск интоксикации организма.

Полностью отказаться от ядохимикатов не получится, но в условиях небольшого фермерского хозяйства можно свести их использование к минимуму.

Заключение

Использование минеральных удобрений и ядохимикатов упрощает работу фермера, позволяя получить значительный объем урожая при минимальных затратах. Стоимость подкормок невелика, тогда как внесение их повышает плодородие почвы в несколько раз. Несмотря на существующий риск нанесения вреда почве и здоровью человека, использующие минеральные подкормки фермеры могут вырастить культурные растения ранее не желавшие приживаться.

Минерализация почвы повышает устойчивость растений к вредителям и болезням, позволяет хранить полученный продукт дольше обычного и улучшить товарный вид. Удобрения можно легко применять даже не имея специального агротехнического образования. Использование их имеет как плюсы, так и минусы, о чем более подробно было изложено выше.

Применение минеральных удобрений (даже в высоких дозах) не всегда приводит к прогнозируемому увеличению урожая.
Многочисленные исследования свидетельствуют о том, что погодные условия вегетационного периода оказывают настолько сильное влияние на развитие растений, что экстремально неблагоприятные погодные условия фактически нивелирует эффект повышения урожайности даже при высоких дозах внесения питательных веществ (Страпенянц и др., 1980; Федосеев, 1985). Коэффициенты использования питательных веществ из минеральных удобрений могут резко отличаться в зависимости от погодных условий вегетационного периода, снижаясь для всех культур в годы с недостаточным увлажнением (Юркин и др., 1978; Державин, 1992). В связи с этим, любые новые приемы повышения эффективности минеральных удобрений в районах неустойчивого земледелия заслуживают внимания.
Один из приемов увеличения эффективности использования питательных веществ из удобрений и почвы, укрепления иммунитета растений к неблагоприятным факторам среды и повышения качества получаемой продукции - использование гуминовых препаратов при возделывании сельскохозяйственных культур.
За последние 20 лет, значительно повысился интерес к гуминовым веществам, применяемым в сельском хозяйстве. Тема гуминовых удобрений не является новой ни для исследователей, ни для практиков-аграриев. Начиная с 50-х годов прошлого столетия изучалось влияние гуминовых препаратов на рост, развитие, урожай различных сельскохозяйственных культур. В настоящее время в связи с резким подорожанием минеральных удобрений гуминовые вещества широко применяются для увеличения эффективности использования питательных веществ из почвы и удобрений, повышения иммунитета растений к неблагоприятным факторам среды и повышения качества урожая получаемой продукции.
Разнообразно сырье для производства гуминовых препаратов. Это могут быть угли бурые и темные, торф, озерный и речной сапропель, вермикомпост, леонардит, а также различные органические удобрения и отходы.
Основным способом получения гуматов на сегодняшний день является технология высокотемпературного щелочного гидролиза сырья, в результате которой происходит высвобождение поверхностно-активных высокомолекулярных органических веществ различной массы, характеризующихся определенным пространственным строением и физико-химическими свойствами. Препаративная форма гуминовых удобрений может представлять собой порошок, пасту или жидкость с различными удельным весом и концентрацией действующего вещества.
Основным отличием для различных гуминовых препаратов является форма действующего компонента гуминовых и фульвокислот и (или) их солей – в водорастворимой, усвояемой или трудноусвояемой формах. Чем выше содержание органических кислот в гуминовом препарате, тем ценнее он как для индивидуального применения, так и особенно для получения комплексных удобрений с гуматами.
Различны способы применения гуминовых препаратов в растениеводстве: обработка посевного материала, некорневые подкормки, внесение водных растворов в почву.
Гуматы могут применяться как отдельно, так и в сочетании со средствами защиты растений, регуляторами роста, макро- и микроэлементами. Спектр их использования в растениеводстве чрезвычайно широк и включает практически все сельскохозяйственные культуры, производимые как в крупных аграрных предприятиях, так и в личных подсобных хозяйствах. В последнее время значительно выросло их использование на различных декоративных культурах.
Гуминовые вещества обладают комплексным действием, улучшающим состояние почвы и системы взаимодействия «почва – растения»:
- повышают подвижность усвояемого фосфора в почве и почвенных растворах, ингибируют иммобилизацию усвояемого фосфора и ретроградацию фосфора;
- кардинально улучшают баланс фосфора в почвах и фосфорное питание растений, выражающееся в увеличении доли фосфорорганических соединений, ответственных за перенос и трансформацию энергии, синтез нуклеиновых кислот;
- улучшают структуру почв, их газопроницаемость, водопроницаемость тяжелых почв;
- поддерживают органо-минеральный баланс почв, препятствуя их засолению, закислению и другим негативным процессам, приводящим к снижению или потере плодородия;
- сокращают вегетативный период за счет улучшения белкового обмена, концентрированной доставки питательных компонентов к плодовой части растений, насыщению их высокоэнергетическими соединениями (сахара, нуклеиновые кислоты и др. органические соединения), а также подавляют накопление нитратов в зеленой части растений;
- усиливают развитие корневой системы растения за счет полноценного питания и ускоренного деления клеток.
Особенно важными являются полезные свойства гуминовых компонентов для поддержания органо-минерального баланса почв при интенсивных технологиях. В статье Пола Фиксена «Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями» (Фиксен, 2010) приведена ссылка на системный анализ методов оценки эффективности использования элементов питания растениями. В качестве одного из значимых факторов, влияющих на эффективность использования элементов питания, указывается интенсивность технологий возделывания сельскохозяйственных культур и связанные с ними изменения структуры и состава почвы, в частности, иммобилизация элементов питания и минерализация органического вещества. Гуминовые компоненты в сочетании с ключевыми макроэлементами, прежде всего фосфором, поддерживают плодородие почв при интенсивных технологиях.
В работе Ивановой С.Е., Логиновой И.В.,Тиндалл Т. «Фосфор: механизмы потерь из почвы и способы их снижения» (Иванова и др., 2011) химическая фиксация фосфора в почвах отмечена как один из основных факторов низкой степени использования фосфора растениями (на уровне 5 - 25% от внесенного в 1-ый год количества фосфора). Повышение степени использования фосфора растениями в год внесения имеет выраженный экологический эффект – снижение попадания фосфора с поверхностным и подземным стоком в водоемы. Сочетание органической составляющей в виде гуминовых веществ с минеральной в удобрениях препятствует химической фиксации фосфора в малорастворимые фосфаты кальция, магния, железа и алюминия и сохраняют фосфор в доступной для растений форме.
По нашему мнению, очень перспективно применение гуминовых препаратов в составе минеральных макроудобрений.
В настоящее время существует несколько способов введения гуматов в сухие минеральные удобрения:
- поверхностная обработка гранулированных промышленных удобрений, которая широко применяется при приготовлении механических тукосмесей;
- механическое введение гуматов в порошок с последующей грануляцией при малотоннажном производстве минеральных удобрений.
- введение гуматов в плав при крупнотоннажном производстве минеральных удобрений (промышленное производство).
Очень широкое распространение в России и за рубежом получило применение гуминовых препаратов для производства жидких минеральных удобрений, используемых для листовых обработок посевов.
Цель настоящей публикации - показать сравнительную эффективность гуматизированных и обычных гранулированных минеральных удобрений на зерновых культурах (озимой и яровой пшенице, ячмене) и яровом рапсе в различных почвенно-климатических зонах России.
В качестве гуминового препарата для получения гарантированных высоких результатов по агрохимической эффективности был выбран гумат натрия «Сахалинский» со следующими показателями (табл. 1 ).

Производство гумата «Сахалинский» основано на использовании бурых углей Солнцевского месторождения о. Сахалин, имеющих очень высокую концентрацию гуминовых кислот в усвояемой форме (более 80%). Щелочная вытяжка из бурых углей этого месторождения представляет собой практически полностью растворимый в воде негигроскопичный и неслеживающийся порошок темно-коричневого цвета. В состав продукта переходят также микроэлементы и цеолиты, способствующие аккумуляции питательных веществ и регулированию обменного процесса.
Кроме указанных показателей гумата натрия «Сахалинский», важным фактором его выбора в качестве гуминовой добавки было производство концентрированных форм гуминовых препаратов в промышленных количествах, высокие агрохимические показатели индивидуального применения, содержание гуминовых веществ преимущественно в водорастворимой форме и наличие жидкой формы гумата для равномерного распределения в грануле при промышленном производстве, а также государственная регистрация в качестве агрохимиката.
В 2004 г. на ОАО «Аммофос» в г. Череповец была выпущена опытная партия нового вида удобрения – азофоски (нитроаммофоски) марки 13:19:19, с добавкой гумата натрия «Сахалинский» (щелочная вытяжка из леонардита) в пульпу по технологии, разработанной в ОАО «НИУИФ». Показатели качества гуматизированной аммофоски 13:19:19 приведены в табл. 2 .

Основной задачей при проведении промышленных испытаний было обоснование оптимального способа ввода гуматной добавки «Сахалинский» с сохранением водорастворимой формы гуматов в продукте. Известно, что гуминовые соединения в кислых средах (при pH<6) переходят в формы водорастворимых гуматов (H-гуматы) с потерей их эффективности.
Ввод порошкообразного гумата «Сахалинский» в ретур при производстве комплексных удобрений обеспечил отсутствие контакта гумата с кислой средой в жидкой фазе и его нежелательных химических трансформаций. Это подтвердил последующий анализ готовых удобрений с гуматами. Ввод гумата фактически на финальной стадии технологического процесса определил сохранение достигнутой производительности технологической системы, отсутствие возвратных потоков и дополнительных выбросов. Не отмечено и ухудшения физико-химических комплексных удобрений (слеживаемость, прочность гранул, пылимость) при наличии гуминовой составляющей. Аппаратурное оформление узла ввода гумата также не представляло сложностей.
В 2004 г. в ЗАО «Сет-Орел Инвест» (Орловская область) был проведен производственный опыт с внесением гуматизированной аммофоски под ячмень. Прибавка урожая ячменя на площади 4532 га от применения гуматизированного удобрения по сравнению со стандартной аммофоской марки 13:19:19 составила 0.33 т/га (11%), содержание белка в зерне повысилось с 11 до 12.6% (табл. 3 ), что дало хозяйству дополнительную прибыль в размере 924 руб/га.

В 2004 г. в ГФУП ОПХ «Орловское» ВНИИ зернобобовых и крупяных культур (Орловская область) проводились полевые опыты по изучению влияния гуматизированной и обычной аммофоски (13:19:19) на урожай и качество яровой и озимой пшеницы.

Схема опытов:

    Контроль (без удобрений)
    N26 P38 K38 кг д.в./га
    N26 P38 K38 кг д.в./га гуматизированное
    N39 P57 K57 кг д.в./га
    N39 P57 K57 кг д.в./га гуматизированное.
Опыты с озимой пшеницей (сорт Московская-39) проводились по двум предшественникам - черный и сидеральный пар. Анализ результатов опыта с озимой пшеницей показал, что гуматизированные удобрения оказывают положительное влияние на урожайность, а также содержание белка и клейковины в зерне по сравнению с традиционным удобрением. Максимальная урожайность (3.59 т/га) наблюдалась в варианте с внесением повышенной дозы гуматизированного удобрения (N39 P57 K57). В этом же варианте получено самое высокое содержание белка и клейковины в зерне (табл. 4 ).

В опыте с яровой пшеницей (сорт Смена) максимальная урожайность 2.78 т/га наблюдалась также при внесении повышенной дозы гуматизированного удобрения. В этом же варианте наблюдалось самое высокое содержание белка и клейковины в зерне. Как и в опыте с озимой пшеницей, внесение гуматизированного удобрения статистически значимо увеличивало урожайность и содержание белка и клейковины в зерне по сравнению с внесением такой же дозы стандартного минерального удобрения. Последний работает не только как индивидуальный компонент, но и улучшает усвояемость растениями фосфора и калия, уменьшает потери азота в азотном цикле питания и в целом улучшает обмен между почвой, почвенными растворами и растениями.
Значимое улучшение качества урожая и озимой и яровой пшеницы свидетельствует о повышении эффективности минерального питания продукционной части растения.
По результатам действия гуматную добавку можно сравнить с влиянием микрокомпонентов (бор, цинк, кобальт, медь, марганец и др.). При относительно небольшом содержании (от десятых долей до 1%) гуматные добавки и микроэлементы обеспечивают практически одинаковое повышение урожайности и качества сельскохозяйственной продукции. В работе (Аристархов, 2010) изучено влияние микроэлементов на урожайность и качество зерна зерновых и зернобобовых и показано увеличение белка и клейковины на примере озимой пшеницы при основном внесении на различных типах почв. Направленное влияние микроэлементов и гуматов на продуктивную часть культур сопоставимо по получаемым результатам.
Высокие агрохимические результаты производства при минимальной доработке аппаратурной схемы крупнотоннажного производства комплексных удобрений, полученные от применения гуматизированной аммофоски (13:19:19) с гуматом натрия «Сахалинский», позволили расширить спектр гуматизированных марок комплексных удобрений с включением нитратсодержащих марок.
В 2010 г. в ОАО «Минеральные удобрения» (г. Россошь, Воронежская область) была произведена партия гуматизированной азофоски 16:16:16 (N:P 2 О 5:K 2 О) с содержанием гумата (щелочная вытяжка из леонардита) – не менее 0.3% и влаги – не более 0.7%.
Азофоска с гуматами представляла собой гранулированное органоминеральное удобрение светло-серого цвета, отличающееся от стандартного только присутствием в нем гуминовых веществ, что придавало едва заметный светло-серый оттенок новому удобрению. Азофоска с гуматами была рекомендована в качестве органоминерального удобрения для основного и «припосевного» внесения в почву и для корневых подкормок под все культуры, где возможно применение обычной азофоски.
В 2010 и 2011 гг. на опытном поле ГНУ Московский НИИСХ «Немчиновка» проводили исследования с гуматизированной азофоской производства ОАО «Минеральные удобрения» в сравнении со стандартной, а также с калийными удобрениями (хлористый калий), содержащими гуминовые кислоты (КалиГум), в сравнении с традиционным калийным удобрением KCl.
Полевые опыты проводили по общепринятой методике (Доспехов, 1985) на опытном поле Московского НИИСХ «Немчиновка».
Отличительная особенность почв опытного участка - высокое содержание фосфора (порядка 150-250 мг/кг), и среднее калия (80-120 мг/кг). Это обусловило отказ от основного внесения фосфорных удобрений. Почва дерново-подзолистая среднесуглинистая. Агрохимическая характеристика почвы перед закладкой опыта: содержание органического вещества – 3.7%, рНсол.–5.2, NH 4 – – следы, NО 3 – – 8 мг/кг, Р 2 О 5 и К 2 О (по Кирсанову) – 156 и 88 мг/кг соответственно, СаО – 1589 мг/кг, MgO – 474 мг/кг.
В опыте с азофоской и рапсом размер опытной делянки составлял 56 м 2 (14м х 4м), повторность – четырехкратная. Предпосевная обработка почвы после основного внесения удобрений – культиватором и непосредственно перед посевом - РБК (ротационной бороной-культиватором). Посев – сеялкой Амазон в оптимальные агротехнические сроки, глубина заделки семян 4-5 см - для пшеницы и 1-3 см – для рапса. Нормы высева: пшеницы – 200 кг/га, рапса – 8 кг/га.
В опыте использовали яровую пшеницу сорт МИС и яровой рапс сорт Подмосковный. Сорт МИС - высокопродуктивный среднеспелый, позволяющий стабильно получать зерно, пригодное для производства макаронных изделий. Сорт устойчив к полеганию; значительно слабее стандарта поражается бурой ржавчиной, мучнистой росой и твердой головней.
Яровой рапс Подмосковный - среднеспелый, вегетационный период 98 дней. Экологически пластичен, отличается равномерным цветением и созреванием, устойчивостью к полеганию 4.5-4.8 балла. Низкое содержание глюкозинолатов в семенах позволяет использовать жмых и шроты в рационах животных и птицы в повышенных нормах.
Урожай пшеницы убирали в фазу полной спелости зерна. Рапс скашивали на зеленый корм в фазу цветения. Опыты для яровой пшеницы и рапса заложены по одной схеме.
Анализ почвы и растений проводили согласно стандартным и общепринятым в агрохимии методам.

Схема опытов с азофоской:


    Фон (50 кг д.в. N/га в подкормку)
    Фон+азофоска основное внесение 30 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 30 кг д.в. NPK/га
    Фон+азофоска основное внесение 60 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 60 кг д.в. NPK/га
    Фон+азофоска основное внесение 90 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 90 кг д.в. NPK/га
Агрохимическую эффективность комплексные удобрения с гуматами продемонстрировали и в экстремально засушливых условиях 2010 г., подтвердив ключевое значение гуматов для стрессоустойчивости культур за счет активации обменных процессов при водном голодании.
В годы проведения исследований погодные условия значительно отличались от средних многолетних для Нечерноземной зоны. В 2010 году май и июнь были благоприятными для развития сельскохозяйственных культур, и у растений были заложены генеративные органы с перспективой на будущий урожай зерна порядка 7 т/га у яровой пшеницы (как в 2009 году) и 3 т/га – у рапса. Однако, как и во всем Центральном регионе РФ, в Московской области с начала июля и до уборки урожая пшеницы в начале августа наблюдалась длительная засуха. Среднесуточные температуры в этот период были превышены на 7 о С, а дневные температуры в течение длительного времени были выше 35 о С. Отдельные кратковременные осадки выпадали в виде ливневых дождей и вода стекала с поверхностным стоком и испарялась, лишь частично впитываясь в почву. Насыщение почвы влагой в кратковременные периоды дождей не превышало глубины проникновения 2-4 см. В 2011 году в первой декаде мая после посева и во время всходов растений осадков выпало почти в 4 раза меньше (4 мм) средневзвешенной многолетней нормы (15 мм).
Среднесуточная температура воздуха в этот период (13.9 о С) была значительно выше среднесуточной многолетней температуры (10.6 о С). Количество осадков и температура воздуха во 2-ую и 3-ю декады мая значительно не отличались от количества средневзвешенных осадков и среднесуточных температур.
В июне осадков выпало значительно меньше средней многолетней нормы, температура воздуха превышала среднесуточные на 2-4 о С.
Жарким и сухим был июль. Всего за вегетационный период осадков выпало на 60 мм меньше нормы, а среднесуточная температура воздуха была примерно на 2 о С выше средней многолетней. Неблагоприятные погодные условия 2010 и 2011 годов не могли не сказаться на состоянии посевов. Засуха совпала с фазой налива зерна у пшеницы, что, в конечном итоге, привело к значительному снижению урожая.
Длительная воздушная и почвенная засуха в 2010 году не дали ожидаемого эффекта от возрастающих доз азофоски. Это проявилось как на пшенице, так и на рапсе.
Дефицит влаги оказался главным препятствием в реализации заложенного почвенного плодородия, при этом урожайность пшеницы в целом была в два раза ниже, чем в аналогичном опыте 2009 года (Гармаш и др., 2011). Прибавки урожая при внесении 200, 400 и 600 кг/га азофоски (физического веса) были практически одинаковы (табл. 5 ).

Низкая урожайность пшеницы обусловлена, в основном, щуплостью зерна. Масса 1000 зерен на всех вариантах опыта равнялась 27 – 28 грамм. Данные по структуре урожая на вариантах достоверно не различалась. В массе снопа зерно составляло около 30% (при нормальных погодных условия этот показатель составляет до 50%). Коэффициент кущения равен 1.1-1.2. Масса зерна в колосе составляла 0.7-0.8 грамм.
В то же время, в вариантах опыта с гуматизированной азофоской получена достоверная прибавка урожая при увеличении доз удобрений. Это обусловлено, прежде всего, лучшим общим состоянием растений и развитием более мощной корневой системы при применении гуматов на фоне общего стресса посевов от длительной и продолжительной засухи.
Значительный эффект от применения гуматизированной азофоски проявился на начальном этапе развития растений рапса. После посева семян рапса в результате кратковременного ливня с последующими высокими температурами воздуха на поверхности почвы образовалась плотная корка. Поэтому всходы на вариантах с внесением обычной азофоски были неравномерными и сильно изреженными по сравнению с вариантами с гуматизированной азофоской, что привело к значительным различиям в урожае зеленой массы (табл. 6 ).

В опыте с калийными удобрениями площадь опытной делянки составляла – 225 м 2 (15 м х 15 м), повторность опыта – четырехкратная, расположение делянок – рендомизированное. Площадь опыта – 3600 м 2 . Опыт проведен в звене севооборота озимые зерновые – яровые зерновые - занятый пар. Предшественник яровой пшеницы – озимое тритикале.
Удобрения вносили вручную из расчета: азота – 60, калия – 120 кг д.в. на га. В качестве азотных удобрений применяли аммиачную селитру, в качестве калийных – калий хлористый и новое удобрение КалиГум. В опыте выращивали яровую пшеницу сорт Злата, рекомендованный для возделывания в Центральном регионе. Сорт раннеспелый с потенциалом продуктивности до 6.5 т/га. Устойчив к полеганию, значительно слабее стандартного сорта поражается бурой ржавчиной и мучнистой росой, на уровне стандартного сорта – септориозом. Семена до посева обрабатывали протравителем «Винцит» в рекомендуемых производителем нормах. В фазе кущения проводили подкормку посевов пшеницы аммиачной селитрой из расчета 30 кг д.в. на 1 га.

Схема опытов с калийными удобрениями:

    Контроль (без удобрений).
    N60 основное + N30 подкормка
    N60 основное + N30 подкормка + К 120 (КCl)
    N60 основное + N30 подкормка + К 120 (КалиГум)
В опытах с калийными удобрениями отмечена тенденция увеличения урожая зерна пшеницы в варианте с испытуемым удобрением КалиГум по сравнению с традиционным хлористым калием. Содержание белка в зерне при внесении гуматизированного удобрения КалиГум было выше на 1.3% по сравнению с KCl. Самое высокое содержание белка наблюдалось на вариантах с минимальным урожаем – контроле и варианте с внесением азота (N60 + N30). Данные по структуре урожая на вариантах достоверно не различалась. Масса 1000 зерен и масса зерна в колосе по вариантам были практически одинаковы и составляли 38.1-38.6 г и 0.7-0.8 г соответственно (табл. 7 ).

Таким образом, полевыми опытами достоверно доказана агрохимическая эффективность комплексных удобрений с добавками гуматов, определяемые по прибавке урожайности и содержанию белка в зерновых культурах. Для обеспечения этих результатов необходим правильный выбор гуминового препарата с высокой долей водорастворимых гуматов, его формы и места ввода в технологический процесс на финальных стадиях. Это позволяет достигать относительно небольшого содержания гуматов (0.2 - 0.5% мас.) в гуматизированных удобрениях и обеспечивать равномерное распределение гуматов по грануле. При этом важным фактором является сохранение высокой доли водорастворимой формы гуматов в гуматизированных удобрениях.
Комплексные удобрения с гуматами повышают устойчивость сельскохозяйственных культур к негативным погодно-климатическим условиям в частности, к засухе, ухудшению структуры почв. Они могут быть рекомендованы как эффективные агрохимикаты в зонах рискованного земледелия, а также при использовании интенсивных методов земледелия со съемом нескольких урожаев в год для поддержания высокого плодородия почв в частности, в расширяющихся зонах с дефицитным водным балансом и аридных зонах. Высокая агрохимическая эффективность гуматизированной аммофоски (13:19:19) определяется комплексным действием минеральной и органической частей с усилением действия питательных компонентов, прежде всего фосфорного питания растений, улучшением обмена веществ между почвой и растениями, повышением стрессоустойчивости растений.

Левин Борис Владимирович – кандидат технических наук, заместитель ген. директора, директор по технической политике АО «ФосАгро-Череповец»; e-mail: [email protected] .

Озеров Сергей Александрович – начальник управления анализа рынка и планирования продаж АО «ФосАгро-Череповец»; e-mail: [email protected] .

Гармаш Григорий Александрович - заведующий лабораторией аналитических исследований ФГБНУ «Московский НИИСХ «Немчиновка», кандидат биологических наук; e-mail: [email protected] .

Гармаш Нина Юрьевна - ученый секретарь ФГБНУ «Московский НИИСХ «Немчиновка», доктор биологических наук; e-mail: [email protected] .

Латина Наталья Валерьевна - генеральный директор ООО «Биомир 2000», директор производства ГК Сахалинские Гумат; e-mail: [email protected] .

Литература

Пол И. Фиксен Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями // Питание растений: Вестник Международного института питания растений, 2010, №1. – с. 2-7.


Иванова С.Е., Логинова И.В., Танделл Т. Фосфор: механизмы потерь из почвы и способы их снижения // Питание растений: Вестник Международного института питания растений, 2011, №2. – с. 9-12.
Аристархов А.Н. и др. Действие микроудобрений на урожайность, сбор белка и качество продукции зерновых и зернобобовых культур // Агрохимия, 2010, №2. – с. 36-49.
Страпенянц Р.А., Новиков А.И., Стребков И.М., Шапиро Л.З., Кирикой Я.Т. Моделирование закономерностей действия минеральных удобрений на урожай // Вестник с.-х. науки, 1980, № 12. – с. 34-43.
Федосеев А.П. Погода и эффективность удобрений. Ленинград: Гидрометиздат, 1985. – 144 с.
Юркин С.Н., Пименов Е.А., Макаров Н.Б. Влияние почвенно-климатических условий и удобрений на расход основных элементов питания урожаем пшеницы // Агрохимия, 1978, № 8. – С. 150-158.
Державин Л.М. Применение минеральных удобрений в интенсивном земледелии. М.: Колос, 1992. – 271 с.
Гармаш Н.Ю., Гармаш Г.А., Берестов А.В., Морозова Г.Б. Микроэлементы в интенсивных технологиях производства зерновых культур //Агрохимический вестник, 2011, № 5. – С. 14-16.

Внесение в почву удобрений не только улучшает питание растений, но и изменяет условия существования почвенных микроорганизмов, которые также нуждаются в минеральных элементах.

При благоприятных климатических условиях количество микроорганизмов и их активность после удобрения почвы значительно возрастают. Усиливается распад гумуса, а вследствие этого увеличивается мобилизация азота, фосфора и других элементов.

Существовала точка зрения, что длительное применение минеральных удобрений приводит к катастрофической потере гумуса и ухудшению физических свойств почвы. Однако экспериментальные материалы ее не подтвердили. Так, на дерново-подзолистой почве ТСХА академиком Д. Н. Прянишниковым был заложен опыт с разной системой удобрения. На делянки, где применяли минеральные удобрения, в среднем за год вносили 36,9 кг азота, 43,6 кг Р205 и 50,1 кг К2 О на 1 га. В почву, удобрявшуюся навозом, его вносили ежегодно по 15,7 т/га. Через 60 лет был проведен микробиологический анализ опытных делянок.

Таким образом, за 60 лет в паровавшей почве содержание гумуса уменьшилось, но в удобрявшихся почвах его потери были меньше, чем в неудобренной. Это можно объяснить тем, что внесение минеральных удобрений способствовало развитию в почве автотрофной микрофлоры (преимущественно водорослей), что привело к некоторому накоплению в парующей" почве органических веществ, а, следовательно, и гумуса. Навоз является прямым источником образования гумуса, накопление которого под действием этого органического удобрения вполне понятно.

На делянках с таким же удобрением, но занятых сельскохозяйственными культурами, удобрения действовали еще более благоприятно. Пожнивные и корневые остатки здесь активизировали деятельность микроорганизмов и компенсировали расход гумуса. Контрольная почва в севообороте содержала 1,38% гумуса, получавшая NPK-1,46, а унавоженная-1,96%.

Следует отметить, что в удобряемых почвах, даже получавших навоз, уменьшается содержание фульвокислот и относительно увеличивается - менее подвижных фракций.

В общем, минеральные удобрения в большей или меньшей степени стабилизируют уровень гумуса в зависимости от количества оставляемых пожнивных и корневых остатков. Богатый перегноем навоз этот процесс стабилизации еще более усиливает. Если навоз вносят в больших количествах, то содержание гумуса в почве возрастает.

Весьма показательны данные Ротамстедской опытной станции (Англия), где проводили длительные исследования (около 120 лет) с монокультурой озимой пшеницы. В почве, не получавшей удобрений, содержание гумуса немного снизилось.

При ежегодном внесении 144 кг минерального азота с другими минеральными веществами (Р 2О 5, К 2О и т. д.) отмечено очень небольшое повышение содержания гумуса. Весьма значительное возрастание гумусности почв имело место при ежегодном внесении в почву 35 т навоза на 1 га (рис. 71).

Внесение в почву минеральных и органических удобрений усиливает интенсивность микробиологических процессов, в результате чего сопряженно увеличивается трансформация органических и минеральных веществ.

Опыты, проведенные Ф. В. Турчиным, показали, что внесение азотсодержащих минеральных удобрений (меченных 15N) увеличивает урожай растений не только в результате удобрительного действия, но и за счет лучшего использования растениями азота из почвы (табл. 27). В опыте в каждый сосуд, вмещавший 6 кг почвы, вносили 420 мг азота.

При увеличении дозы азотных удобрений доля используемого азота почвы повышается.

Характерный показатель активизации деятельности микрофлоры под влиянием удобрений - усиление «дыхания» почвы, то есть выделение ею СО2. Это результат ускоренного разложения органических соединений почвы (в том числе гумуса).

Внесение в почву фосфорно-калийных удобрений мало способствует использованию растениями почвенного азота, но усиливает деятельность азотфиксирующих микроорганизмов.

Изложенные сведения позволяют сделать заключение, что, помимо прямого действия на растения, азотные минеральные удобрения оказывают и большое косвенное влияние - мобилизуют почвенный азот

(получение «экстра азота»). В богатых гумусом почвах такое косвенное действие значительно больше, чем прямое. Это сказывается на суммарной эффективности минеральных удобрений. Обобщение результатов 3500 опытов с зерновыми культурами, проведенных в Нечерноземной зоне европейской части СНГ, сделанное А. П. Федосеевым, показало, что одинаковые дозы удобрений (NPK 50-100 кг/га) дают на плодородных почвах значительно большие прибавки урожая, чем на бедных почвах: соответственно 4,1; 3,7 и 1,4 ц/га на высоко-, средне - и слабоокультуренных почвах.

Весьма существенно, что высокие дозы азотных удобрений (около 100 кг/га и более) оказываются эффективными только на высокоокультуренных почвах. На низкоплодородных почвах они обычно действуют отрицательно (рис. 72).

В таблице 28 приведены обобщенные данные ученых ГДР по расходу азота для получения 1 ц зерна на разных почвах. Как видно, экономичнее всего минеральные удобрения используются на почвах, содержащих больше гумуса.

Таким образом, для получения высоких урожаев нужно не только удобрять почву минеральными удобрениями, но и создавать достаточный запас питательных для растений веществ в самой почве. Этому способствует внесение в почву органических удобрений.

Иногда внесение в почву минеральных удобрений, особенно в высоких дозах, крайне неблагоприятно сказывается на ее плодородии. Обычно это наблюдается на малобуферных почвах при использовании физиологически кислых удобрений. При подкислении почвы в раствор переходят соединения алюминия, оказывающие токсическое действие на микроорганизмы почвы и растения.

Неблагоприятное действие минеральных удобрений было отмечено на легких малоплодородных песчаных и супесчаных подзолистых почвах Соликамской сельскохозяйственной опытной станции. Один из анализов различно удобрявшейся почвы этой станции приведен в таблице 29.

В этом опыте в почву ежегодно вносили N90, Р90, К120, навоз - 2 раза в три года (25 т/га). Из расчета на полную гидролитическую кислотность была дана известь (4,8 т/га).

Применение в течение ряда лет NPK существенно снизило численность микроорганизмов в почве. Не пострадали лишь микроскопические грибы. Внесение извести, и особенно извести с навозом, оказало весьма благотворное влияние на сапрофитную микрофлору. Изменяя реакцию почвы в благоприятную сторону, известь нейтрализовала вредное влияние физиологически кислых минеральных удобрений.

По истечении 14 лет урожаи при внесении минеральных удобрений фактически снизились до нуля в результате сильного подкисления почвы. Применение известкования и навоза способствовало нормализации pH почвы и получению достаточно высокого для указанных условий урожая. В общем, микрофлора почвы и растения реагировали на изменение почвенного фона примерно одинаково.

Обобщение большого материала по использованию минеральных удобрений на территории СНГ (И. В. Тюрин, А. В. Соколов и др.) позволяет сделать заключение, что их влияние на урожай связано с зональным положением почв. Как уже отмечалось, в почвах северной зоны микробиологические мобилизационные процессы протекают замедленно. Поэтому здесь сильнее ощущается дефицит для растений основных элементов питания, и минеральные удобрения действуют более эффективно, чем в южной зоне. Это, однако, не противоречит приведенному выше положению о лучшем действии минеральных удобрений на высокоокультуренных фонах в отдельных почвенно - климатических зонах.

Кратко остановимся на использовании микроудобрений. Некоторые из них, например, молибден, входят в ферментную систему азотфиксирующих микроорганизмов. Для симбиотической азотфиксации

необходим также бор, который обеспечивает формирование нормальной сосудистой системы у растений, а следовательно, и успешное протекание процесса азотоусвоения. Большинство других микроэлементов (Сu, Mn, Zn и т. д.) в небольших дозах усиливает интенсивность микробиологических процессов в почве.

Как было показано, весьма благоприятное действие на микрофлору почвы оказывают органические удобрения и особенно навоз. Скорость минерализации навоза в почве определяется рядом факторов, но при других благоприятных условиях она зависит в основном от отношения в навозе углерода к азоту (С: N). Обычно навоз вызывает повышение урожая в течение 2-3 лет в отличие от. азотных удобрений, которые не имеют последействия. Полуперепревший навоз с более узким соотношением С: N проявляет удобрительное действие с момента его внесения, так как он не имеет богатого углеродом материала, вызывающего энергичное усвоение азота микроорганизмами. В перепревшем навозе значительная часть азота переведена в форму перегноя, который слабо минерализуется. Поэтому навоз - сыпец как азотное удобрение оказывает меньшее, но длительное действие.

Указанные особенности относятся и к компостам, и к другим органическим удобрениям. С учетом их можно создать органические удобрения, действующие в определенные фазы развития растений.

Широко используют также зеленые удобрения, или сидераты. Это органические удобрения, запаханные в почву, они более или менее быстро минерализуются в зависимости от почвенно - климатических условий.

В последнее время большое значение уделяют вопросу об использовании соломы как органического удобрения. Внесение соломы могло бы обогатить почву гумусом. Кроме того, в соломе содержится около 0,5% азота и другие необходимые растениям элементы. При разложении соломы выделяется много углекислоты, что также благотворно действует на посевы. Еще в начале XIX в. английский химик Ж. Деви указывал на возможность применения соломы в качестве органического удобрения.

Однако до последнего времени запахивать солому не рекомендовали. Это обосновывали тем, что солома имеет широкое отношение C:N (около 80:1) и ее заделка в почву вызывает биологическое закрепление минерального азота. Растительные материалы с более узким соотношением C:N такого явления не вызывают (рис. 73).

Растения, посеянные после запашки соломы, испытывают недостаток азота. Исключение составляют лишь бобовые культуры, которые обеспечивают себя азотом с помощью клубеньковых бактерий, фиксирующих молекулярный азот культуры, которые обеспечивают себя азотом с помощью клубеньковых бактерий, фиксирующих молекулярный азот.

Недостаток азота после заделки соломы можно компенсировать внесением азотных удобрений из расчета 6-7 кг азота на 1т запаханной соломы. При этом положение не вполне исправляется, так как солома содержит некоторые вещества, токсичные для растений. Требуется некоторый период времени для их детоксикации, которую проводят микроорганизмы, разлагающие эти соединения.

Проведенная за последние годы экспериментальная работа позволяет дать рекомендации по устранению неблагоприятного влияния соломы на сельскохозяйственные культуры.

В условиях северной зоны солому в виде резки целесообразно запахивать в верхний слой почвы. Здесь в аэробных условиях все токсичные для растений вещества довольно быстро разлагаются. При мелкой запашке, через 1-1,5 месяца происходит разрушение вредных соединений и начинает освобождаться биологически закрепленный азот. На юге, особенно в субтропической и тропической зонах, разрыв времени между заделкой соломы и посевом может быть самым минимальным даже при глубокой ее запашке. Здесь все неблагоприятные моменты исчезают весьма быстро.

При соблюдении этих рекомендаций почва не только обогащается органическим веществом, но и в ней активизируются мобилизационные процессы, в том числе деятельность азотфиксирующих микроорганизмов. В зависимости от ряда условий внесение 1 т соломы приводит к фиксации 5-12 кг молекулярного азота.

Сейчас на основании многочисленных полевых опытов, проведенных в нашей стране, вполне подтвердилась целесообразность использования избытков соломы как органического удобрения.