Теплопроводность воздушной прослойки в стене. Воздушные прослойки

Описание:

Ограждающие конструкции с вентилируемыми воздушными прослойками давно использовались при строительстве зданий. Применение вентилируемых воздушных прослоек имело одну из следующих целей

Теплозащита фасадов с вентилируемым воздушным зазором

Часть 1

Зависимость максимальной скорости движения воздуха в зазоре от температуры наружного воздуха при различных значениях термических сопротивлений стены с утеплителем

Зависимость скорости воздуха в воздушном зазоре от температуры наружного воздуха при различных значениях ширины зазора d

Зависимость термического сопротивления воздушного зазора, R эф зазора, от температуры наружного воздуха при различных значениях термического сопротивления стены, R пр терм. констр.

Зависимость эффективного термического сопротивления воздушного зазора, R эф зазора, от ширины зазора, d, при различных значениях высоты фасада, L

На рис. 7 представлены зависимости максимальной скорости воздуха в воздушном зазоре от температуры наружного воздуха при различных значениях высоты фасада, L, и термического сопротивления стены с утеплителем, R пр терм. констр. , а на рис. 8 - при различных значениях ширины зазора d.

Во всех случаях скорость воздуха возрастает со снижением температуры наружного воздуха. Увеличение высоты фасада в два раза приводит к незначительному повышению скорости воздуха. Снижение термического сопротивления стены приводит к повышению скорости воздуха, это объясняется увеличением потока теплоты, а значит и температурного перепада в зазоре. Ширина зазора существенно влияет на скорость воздуха, при уменьшении значений d скорость воздуха снижается, что объясняется повышением сопротивления.

На рис. 9 представлены зависимости термического сопротивления воздушного зазора, R эф зазора, от температуры наружного воздуха при различных значениях высоты фасада, L, и термического сопротивления стены с утеплителем, R пр терм. констр. .

Прежде всего, следует отметить слабую зависимость R эф зазора от температуры наружного воздуха. Это легко объяснимо, т. к. разность температуры воздуха в зазоре и температуры наружного воздуха и разность температуры внутреннего воздуха и температуры воздуха в зазоре изменяются практически пропорционально при изменении t н, поэтому их отношение, входящее в (3), почти не меняется. Так, при понижении t н от 0 до –40 °С R эф зазора снижается от 0,17 до 0,159 м 2 °С/Вт. Несущественно зависит R эф зазора и от термического сопротивления облицовки, при увеличении R пр терм. обл. от 0,06 до 0,14 м 2 °С/Вт значение R эф зазора изменяется от 0,162 до 0,174 м 2 °С/Вт. Этот пример показывает неэффективность утепления облицовки фасада. Изменения значения эффективного термического сопротивления воздушного зазора в зависимости от температуры наружного воздуха и от термического сопротивления облицовки являются несущественными для практического их учета.

На рис. 10 представлены зависимости термического сопротивления воздушного зазора, R эф зазора, от ширины зазора, d, при различных значениях высоты фасада. Зависимость R эф зазора от ширины зазора выражена наиболее отчетливо - при снижении толщины зазора значение R эф зазора возрастает. Это связано с уменьшением высоты установления температуры в зазоре x 0 и, соответственно, с повышением средней температуры воздуха в зазоре (рис. 8 и 6). Если для других параметров зависимость слабая, т. к. происходит наложение различных процессов частично гасящих друг друга, то в данном случае этого нет - чем тоньше зазор, тем быстрей он прогревается, и чем медленнее движется воздух в зазоре, тем быстрей он нагревается.

Вообще наибольшее значение R эф зазора может быть достигнуто при минимальном значении d, максимальном значении L, максимальном значении R пр терм. констр. . Так, при d = 0,02 м, L = 20 м, R пр терм. констр. = 3,4 м 2 °С/Вт вычисленное значение R эф зазора составляет 0,24 м 2 °С/Вт.

Для расчета теплопотерь через ограждение большее значение имеет относительное влияние эффективного термического сопротивления воздушного зазора, т. к. оно определяет насколько уменьшатся теплопотери. Несмотря на то что наибольшее абсолютное значение R эф зазора достигается при максимальном R пр терм. констр. , наибольшее влияние эффективное термическое сопротивление воздушного зазора на теплопотери оказывает при минимальном значении R пр терм. констр. . Так, при R пр терм. констр. = = 1 м 2 °С/Вт и t н = 0 °С благодаря воздушному зазору теплопотери снижаются на 14 %.

При горизонтально расположенных направляющих, к которым крепятся облицовочные элементы, при проведении расчетов ширину воздушного зазора целесообразно принимать равной наименьшему расстоянию между направляющими и поверхностью теплоизоляции, т. к. эти участки определяют сопротивление движению воздуха (рис. 11).

Как показали проведенные расчеты, скорость движения воздуха в зазоре невелика и составляет менее 1 м/с. Разумность принятой модели расчета косвенно подтверждается литературными данными. Так, в работе приведен краткий обзор результатов экспериментальных определений скорости воздуха в воздушных зазорах различных фасадов (см. табл.). К сожалению, содержащиеся в статье данные неполны и не позволяют установить все характеристики фасадов. Однако они показывают, что скорость воздуха в зазоре близка к значениям, полученным описанными выше расчетами.

Представленный метод расчета температуры, скорости движения воздуха и других параметров в воздушном зазоре позволяет оценивать эффективность того или иного конструктивного мероприятия с точки зрения повышения эксплуатационных свойств фасада. Этот метод можно усовершенствовать, прежде всего, это должно относиться к учету влияния зазоров между облицовочными плитами. Как следует из результатов расчетов и приведенных в литературе экспериментальных данных, это усовершенствование не окажет большого влияния на приведенное сопротивление конструкции, однако оно может оказать влияние на другие параметры.

Литература

1. Батинич Р. Вентилируемые фасады зданий: Проблемы строительной теплофизики, систем обеспечения микроклимата и энергосбережения в зданиях / Сб. докл. IV науч.-практ. конф. М.: НИИСФ, 1999.

2. Езерский В. А., Монастырев П. В. Крепежный каркас вентилируемого фасада и температурное поле наружной стены // Жилищное строительство. 2003. № 10.

4. СНиП II-3-79*. Строительная теплотехника. М.: ГУП ЦПП, 1998.

5. Богословский В. Н. Тепловой режим здания. М., 1979.

6. Sedlbauer K., Kunzel H. M. Luftkonvektions einflusse auf den Warmedurchgang von belufteten Fassaden mit Mineralwolledammung // WKSB. 1999. Jg. 44. H.43.

Продолжение следует.

Список обозначений

с в = 1 005 Дж/(кг °С) - удельная теплоемкость воздуха

d - ширина воздушного зазора, м

L - высота фасада с вентилируемым зазором, м

n к - среднее количество кронштейнов, приходящихся на м 2 стены, м–1

R пр о. констр. , R пр о. обл. - приведенные сопротивления теплопередаче частей конструкции от внутренней поверхности до воздушного зазора и от воздушного зазора до наружной поверхности конструкции соответственно, м 2 °С/Вт

R о пр - приведенное сопротивление теплопередаче всей конструкции, м 2 °С/Вт

R усл о. констр. - сопротивление теплопередаче по глади конструкции (без учета теплопроводных включений), м 2 °С/Вт

R усл о - сопротивление теплопередаче по глади конструкции, определяется как сумма термических сопротивлений слоев конструкции и сопротивлений теплоотдачи внутренней (равное 1/aв) и наружной (равное 1/aн) поверхностей

R пр СНиП - приведенное сопротивление теплопередаче конструкции стены с утеплителем, определяемое в соответствии со СНиП II-3-79*, м 2 °С/Вт

R пр терм. констр. - термическое сопротивление стены с утеплителем (от внутреннего воздуха до поверхности утеплителя в воздушном зазоре), м 2 °С/Вт

R эф зазора - эффективное термическое сопротивление воздушного зазора, м 2 °С/Вт

Q н - рассчитанный поток теплоты через неоднородную конструкцию, Вт

Q 0 - поток теплоты через однородную конструкцию той же площади, Вт

q - плотность потока теплоты через конструкцию, Вт/м 2

q 0 - плотность потока теплоты через однородную конструкцию, Вт/м 2

r - коэффициент теплотехнической однородности

S - площадь сечения кронштейна, м 2

t - температура, °С

Зазоры, доступные потокам воздуха, являются продухами, ухудшающими теплоизоляционные характеристики стен. Зазоры же замкнутые (так же как закрытые поры вспененного материала) являются теплоизолирующими элементами. Ветронепродуваемые пустоты широко применяются в строительстве для снижения теплопотерь через ограждающие конструкции (щели в кирпичах и блоках, каналы в бетонных панелях, зазоры в стеклопакетах и т. п.). Пустоты в виде непродуваемых воздушных прослоек используются и в стенах бань, в том числе каркасных. Эти пустоты зачастую являются основными элементами теплозащиты. В частности, именно наличие пустот с горячей стороны стены позволяет использовать легкоплавкие пенопласты (пенополистирол и пенополиэтилен) в глубинных зонах стен высокотемпературных бань.

В то же время пустоты в стенах являются самыми коварными элементами. Стоит в малейшей степени нарушить ветроизоляцию, и вся система пустот может стать единым продуваемым выхолаживающим продухом, выключающим из системы теплоизоляции стен все внешние теплоизоляционные слои. Поэтому пустоты стараются делать небольшими по размеру и гарантированно изолируют друг от друга.

Использовать понятие теплопроводности воздуха (а тем более использовать ультранизкое значение коэффициента теплопроводности неподвижного воздуха 0,024 Вт/м град) для оценки процессов теплопередачи через реальный воздух невозможно, поскольку воздух в крупных пустотах является крайне подвижной субстанцией. Поэтому на практике для теплотехнических расчётов процессов передачи тепла даже через условно «неподвижный» воздух применяют эмпирические (опытные, экспериментальные) соотношения. Чаще всего (в простейших случаях) в теории теплопередачи считается, что тепловой поток из воздуха на поверхность тела в воздухе равен Q = α∆Т , где α - эмпирический коэффициент теплопередачи «неподвижного» воздуха, ∆Т - разность температур поверхности тела и воздуха. В обычных условиях жилых помещений коэффициент теплопередачи равен ориентировочно α = 10 Вт/м² град. Именно этой цифры мы будем придерживаться при оценочных расчётах прогрева стен и тела человека в бане. При помощи потоков воздуха со скоростью V (м/сек), тепловой поток увеличивается на величину конвективной составляющей Q=βV∆T , где β примерно равен 6 Вт сек/м³ град . Все величины зависят от пространственной ориентации и шероховатости поверхности. Так, по действующим нормам СНиП 23-02-2003 коэффициент теплопередачи от воздуха к внутренним поверхностям ограждающих конструкций принимается равным 8,7 Вт/м² град для стен и гладких потолков со слабо выступающими рёбрами (при отношении высоты рёбер «h» к расстоянию «а» между гранями соседних рёбер h/a < 0,3); 7,6 Вт/м² град для потолков с сильно выступающими рёбрами (при отношении h/a > 0,3); 8,0 Вт/м² град для окон и 9,9 Вт/м² град для зенитных фонарей. Финские специалисты принимают коэффициент теплопередачи в «неподвижном» воздухе сухих саун равным 8 Вт/м² град (что в пределах ошибок измерений совпадает с принимаемым нами значением) и 23 Вт/м² град при наличии потоков воздуха со скоростью в среднем 2 м/сек.

Столь малое значение коэффициента теплопередачи в условно «неподвижном» воздухе α = 10 Вт/м² град соответствует понятию воздуха как теплоизолятора и объясняет необходимость использования высоких температур в саунах для быстрого согрева тела человека. Применительно же к стенам это означает, что при характерных теплопотерях через стены бани (50- 200) Вт/м² разница температур воздуха в бане и температур внутренних поверхностей стен бани может достигать (5-20)°С. Это очень большая величина, часто никак и никем не учитывающаяся. Наличие в бане сильной конвекции воздуха позволяет снизить перепад температуры вдвое. Отметим, что столь высокие перепады температур, характерные для бань, недопустимы в жилых помещениях. Так, нормируемый в СНиП 23-02-2003 температурный перепад между воздухом и стенами не должен превышать 4°С в жилых помещениях, 4,5°С в общественных и 12°С в производственных. Более высокие перепады температур в жилых помещениях неминуемо приводят к ощущениям холода от стен и выпадению росы на стенах.

Используя введенное понятие коэффициента теплопередачи от поверхности в воздух, пустоты внутри стены можно рассматривать как последовательное расположение теплопередающих поверхностей (см. рис. 35). Пристеночные зоны воздуха, где и наблюдаются вышеуказанные перепады температур ∆T, называются пограничными слоями. Если в стене (или стеклопакете) имеются два пустотных промежутка (например, три стекла), то фактически имеется 6 пограничных слоев. Если через такую стену (или стеклопакет) проходит тепловой поток 100 Вт/м², то на каждом пограничном слое температура изменяется на ∆T = 10°С , а на всех шести слоях перепад температуры составляет 60°С. Учитывая, что тепловые потоки через каждый в отдельности пограничный слой и через всю стену в целом равны между собой и составляют всё же 100 Вт/м², то результирующий коэффициент теплопередачи для стены без пустот («стеклопакет» с одним стеклом) составит 5 Вт/м² град, для стены с одной пустотной прослойкой (стеклопакет с двумя стёклами) 2,5 Вт/м² град, а с двумя пустотными прослойками (стеклопакет с тремя стёклами) 1,67 Вт/м² град. То есть, чем больше пустот (или чем больше стёкол), тем теплей стена. При этом теплопроводность самого материала стен (стёкол) в этом расчёте предполагалась бесконечно большой. Иными словами, даже из очень «холодного» материала (например, стали) можно в принципе изготовить очень тёплую стену, предусмотрев лишь наличие в стене множества воздушных прослоек. Собственно, на этом принципе и работают все стеклянные окна.

Для упрощения оценочных расчётов удобней использовать не коэффициент теплопередачи α, а его обратную величину - сопротивление теплопередаче (термическое сопротивление пограничного слоя) R = 1/ α . Термическое сопротивление двух пограничных слоев, отвечающее одному слою материала стены (одного стекла) или одному воздушному промежутку (прослойке), равно R = 0,2 м² град/Вт , а трёх слоев материала стены (как на рисунке 35) - сумме сопротивлений шести пограничных слоев, то есть 0,6 м² град/Вт. Из определения понятия сопротивления теплопередаче Q =∆T/R следует, что при том же тепловом потоке 100 Вт/м² и термическом сопротивлении 0,6 м² град/Вт перепад температуры на стене с двумя воздушными прослойками составит те же 60°С. Если же число воздушных прослоек увеличить до девяти, то перепад температуры на стене при том же тепловом потоке 100 Вт/м² составит 200°С, то есть расчётная температура внутренней поверхности стены в бане при тепловом потоке 100 Вт/м² повысится с 60 °С до 200°С (если на улице 0°С).

Коэффициент теплопередачи является результирующим показателем, комплексно суммирующим последствия всех физических процессов, происходящих в воздухе у поверхности теплоотдающего или тепловоспринимающего тела. При малых перепадах температур (и малых тепловых потоках) конвективные потоки воздуха малы, теплопередача в основном происходит кондуктивно за счёт теплопроводности неподвижного воздуха. Толщина пограничного слоя составляла бы малую величину, всего лишь a=λR=0,0024 м, где λ=0,024 Вт/м град - коэффициент теплопроводности неподвижного воздуха, R=0,1 м²град/Вт -термическое сопротивление пограничного слоя. В пределах пограничного слоя воздух имеет разные температуры, вследствие чего за счёт гравитационных сил воздух у горячей вертикальной поверхности начинает всплывать (а у холодной - погружаться), набирая скорость, и турбулизируется (взвихривается). За счёт вихрей теплопередача воздуха увеличивается. Если вклад этой конвективной составляющей формально ввести в значение коэффициента теплопроводности λ, то увеличение этого коэффициента теплопроводности будет отвечать формальному увеличению толщины пограничного слоя a=λR (как мы увидим ниже, примерно в 5-10 раз с 0,24 см до 1-3 см). Ясно, что это формально увеличенная толщина пограничного слоя корреспондируется с размерами воздушных потоков и вихрей. Не углубляясь в тонкости структуры пограничного слоя, отметим, что значительно большее значение имеет понимание того, что передающееся в воздух тепло может «улететь» вверх с конвективным потоком, так и не достигнув следующей пластины многослойной стены или следующего стекла стеклопакета. Это отвечает случаю калориферного нагрева воздуха, который будет рассмотрен ниже при анализе экранированных металлических печей. Здесь же мы рассматриваем случай, когда воздушные потоки в прослойке имеют ограниченную высоту, например, в 5-20 раз превышающую толщину прослойки δ. При этом в воздушных прослойках возникают циркуляционные потоки, которые фактически участвуют в переносе тепла совместно с кондуктивными потоками тепла.

При малых толщинах воздушных прослоек встречные потоки воздуха у противоположных стенок зазора начинают влиять друг на друга (перемешиваются). Иными словами, толщина воздушной прослойки становится меньше двух невозмущенных пограничных слоев, вследствие чего коэффициент теплопередачи увеличивается, а сопротивление теплопередачи соответственно уменьшается. Кроме того, при повышенных температурах стенок воздушных прослоек начинают играть роль процессы теплопередачи излучением. Уточнённые данные в соответствии с официальными рекомендациями СНиП П-3-79* приводятся в таблице 7, откуда видно, что толщина невозмущенных пограничных слоев составляет 1-3 см, но существенное изменение теплопередачи наступает лишь при толщинах воздушных прослоек менее 1 см. Это означает, в частности, что воздушные промежутки между стёклами в стеклопакете не следует делать толщиной менее 1 см.

Таблица 7. Термическое сопротивление замкнутой воздушной прослойки, м² град/Вт

Толщина воздушной прослойки, см для горизонтальной прослойки при потоке тепла снизу вверх или для вертикальной прослойки для горизонтальной прослойки при потоке тепла сверху вниз
при температуре воздуха в прослойке
положительной отрицательной положительной отрицательной
1 0,13 0,15 0,14 0,15
2 0,14 0,15 0,15 0,19
3 0,14 0,16 0,16 0,21
5 0,14 0,17 0,17 0,22
10 0,15 0,18 0,18 0,23
15 0,15 0,18 0,19 0,24
20-30 0,15 0,19 0,19 0,24

Их таблицы 7 также следует, что более тёплые воздушные прослойки имеют более низкие термические сопротивления (лучше пропускают через себя тепло). Это объясняется влиянием на теплоперенос лучистого механизма, который мы рассмотрим в следующем разделе. Отметим при этом, что вязкость воздуха растёт с температурой, так что тёплый воздух турбулизуется хуже.


Рис. 36. . Обозначения те же, что и на рисунке 35. За счёт низкой теплопроводности материала стенок возникают перепады температур ∆Тc = QRc , где Rc - термическое сопротивление стенки Rc = δc / λc (δc - толщина стенки, λc - коэффициент теплопроводности материала стенки). При увеличении с перепады температур ∆Тc уменьшаются, но перепады температур на пограничных слоях ∆Т сохраняются неизменными. Это иллюстрируется распределением Твнутр, относящимся к случаю более высокой теплопроводности материала стенок. Тепловой поток через всю стену Q = ∆T/R = ∆Тc/Rc = (Твнутр - Tвнешн) /(3Rc+6R) . Термическое сопротивление пограничных слоев R и их толщина а не зависят от теплопроводности материала стенок λc и их термического сопротивления Rc.
Рис. 37. : а - три слоя металла (или стекла), отстоящих друг от друга с зазорами по 1,5 см, эквивалентны древесине (деревянной доске) толщиной 3,6 см; б - пять слоев металла с зазорами по 1,5 см, эквивалентны древесине толщиной 7,2 см; в - три слоя фанеры толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 4,8 см; г - три слоя пенополиэтилена толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 7,8 см; д - три слоя металла с зазорами по 1,5 см, заполненными эффективным утеплителем (пенополистиролом, пенополиэтиленом или минватой), эквивалентны древесине толщиной 10,5 см. Принятая величина зазоров является условной, эквивалентные толщины древесины в примерах а-г слабо изменяются при изменении величины зазоров в пределах (1-30) см.

Если конструкционный материал стены обладает низкой теплопроводностью, то при расчётах необходимо учитывать его вклад в теплосопротивление стены (рис. 36). Хотя вклад пустот, как правило, является значительным, заполнение всех пустот эффективным утеплителем позволяет (за счёт полной остановки движения воздуха) существенно (в 3-10 раз) повысить тепловое сопротивление стены (рис. 37).

Сама по себе возможность получения вполне пригодных для бань (по крайней мере, летних) тёплых стен из нескольких слоев «холодного» металла, конечно же, интересна и используется, например, финнами для противопожарной защиты стен в саунах около печи. На практике, однако, такое решение оказывается весьма сложным ввиду необходимости механической фиксации параллельных слоев металла многочисленными перемычками, которые играют роль нежелательных «мостиков» холода. Так или иначе, даже один слой металла или ткани «греет», если не продувается ветром. На этом явлении основаны палатки, юрты, чумы, которые, как известно, до сих пор используются (и использовались веками) в качестве бань в кочевых условиях. Так, один слой ткани (всё равно какой, лишь бы непродуваемой) лишь в два раза «холодней» кирпичной стены толщиной 6 см, а прогревается в сотни раз быстрее. Тем не менее, ткань палатки остаётся намного холодней воздуха в палатке, что не позволяет реализовать сколько бы то ни было длительных паровых режимов. К тому же, любые (даже мелкие) порывы ткани сразу же приводят к мощным конвективным теплопотерям.

Наибольшее значение в бане (так же как и в жилых зданиях) имеют воздушные прослойки в окнах. При этом приведённое сопротивление теплопередаче окон измеряется и рассчитывается на всю площадь оконного проёма, то есть не только на стеклянную часть, но и на переплёт (деревянный, стальной, алюминиевый, пластиковый), который, как правило, имеет лучшие теплоизолирующие характеристики, чем стекло. Для ориентировки приведём нормативные значения термического сопротивления окон разных типов по СНиП П-3-79* и сотовых материалов с учётом теплового сопротивления внешних пограничных слоев внутри и вне помещения (см. таблицу 8).

Таблица 8. Приведенное сопротивление теплопередаче окон и оконных материалов

Тип конструкции Сопротивление теплопередаче, м² град/Вт
Одинарное остекление 0,16
Двойное остекление в спаренных переплётах 0,40
Двойное остекление в раздельных переплётах 0,44
Тройное остекление в раздельно-спаренных переплётах 0,55
Четырёхслойное остекление в двух спаренных переплётах 0,80
Стеклопакет с межстекольным расстоянием 12 мм: однокамерный 0,38
двухкамерный 0,54
Блоки стеклянные пустотные (с шириной швов 6 мм) размером: 194x194x98 мм 0,31
244x244x98 мм 0,33
Поликарбонат сотовый «Акууег» толщиной: двухслойный 4 мм 0,26
двухслойный 6 мм 0,28
двухслойный 8 мм 0,30
двухслойный 10 мм 0,32
трёхслойный 16 мм 0,43
многоперегородчатый 16 мм 0,50
многоперегородчатый 25 мм 0,59
Полипропилен сотовый «Акувопс!» толщиной: двухслойный 3,5 мм 0,21
двухслойный 5 мм 0,23
двухслойный 10 мм 0,30
Брусовая стена (для сравнения) толщиной: 5 см 0,55
10 см 0,91

.
1.3 Здание как единая энергетическая система .
2. Тепловлагопередача через наружные ограждения .
2.1 Основы теплопередачи в здании .
2.1.1 Теплопроводность .
2.1.2 Конвекция .
2.1.3 Излучение .
2.1.4 Термическое сопротивление воздушной прослойки.
2.1.5 Коэффициенты теплоотдачи на внутренней и наружной поверхностях.
2.1.6 Теплопередача через многослойную стенку.
2.1.7 Приведенное сопротивление теплопередаче.
2.1.8 Распределение температуры по сечению ограждения.
2.2 Влажностный режим ограждающих конструкций.
2.2.1 Причины появления влаги в ограждениях.
2.2.2 Отрицательные последствия увлажнения наружных ограждений.
2.2.3 Связь влаги со строительными материалами.
2.2.4 Влажный воздух.
2.2.5 Влажность материала.
2.2.6 Сорбция и десорбция.
2.2.7 Паропроницаемость ограждений.
2.3 Воздухопроницаемость наружных ограждений.
2.3.1 Основные положения.
2.3.2 Разность давлений на наружной и внутренней поверхности ограждений.
2.3.3 Воздухопроницаемость строительных материалов.

2.1.4 Термическое сопротивление воздушной прослойки.


Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек , расположенных между слоями ограждающей конструкции, называют термическим сопротивлением R в.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис.5. Теплообмен в воздушной прослойке.


Тепловой поток, проходящий через воздушную прослойку q в.п , Вт/м
² , складывается из потоков, передаваемых теплопроводностью (2) q т , Вт/м ² , конвекцией (1) q к , Вт/м ² , и излучением (3) q л , Вт/м ² .


(2.12)

При этом доля потока, передаваемого излучением самая большая. Рассмотрим замкнутую вертикальную воздушную прослойку, на поверхностях которой разность температуры составляет 5ºС. С увеличением толщины прослойки от 10 мм до 200 мм доля теплового потока за счет излучения возрастает с 60% до 80%. При этом доля теплоты, передаваемой путем теплопроводности, падает от 38% до 2%, а доля конвективного теплового потока возрастает с 2% до 20% .
Прямой расчет этих составляющих достаточно громоздок. Поэтому в нормативных документах приводятся данные о термических сопротивлениях замкнутых воздушных прослоек, которые в 50-х годах ХХ века была составлена К.Ф. Фокиным по результатам экспериментов М.А. Михеева . При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги, затрудняющей лучистый теплообмен между поверхностями, обрамляющими воздушную прослойку, термическое сопротивление следует увеличить в два раза. Для увеличения термического сопротивления замкнутыми воздушными прослойками в рекомендуется иметь в виду следующие выводы из исследований:
1) эффективными в теплотехническом отношении являются прослойки небольшой толщины;
2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну большой;
3) воздушные прослойки желательно располагать ближе к наружной поверхности ограждения, так как при этом в зимнее время уменьшается тепловой поток излучением;
4) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий;
5) для сокращения теплового потока, передаваемого излучением, можно одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения около ε=0,05. Покрытие фольгой обеих поверхностей воздушной прослойки практически не уменьшает передачу теплоты по сравнению с покрытием одной поверхности.
Вопросы для самоконтроля
1. Что является потенциалом переноса теплоты?
2. Перечислите элементарные виды теплообмена.
3. Что такое теплопередача?
4. Что такое теплопроводность?
5. Что такое коэффициент теплопроводности материала?
6. Напишите формулу теплового потока, передаваемого теплопроводностью в многослойной стенке при известных температурах внутренней tв и наружной tн поверхностей.
7. Что такое термическое сопротивление?
8. Что такое конвекция?
9. Напишите формулу теплового потока, передаваемого конвекцией от воздуха к поверхности.
10. Физический смысл коэффициента конвективной теплоотдачи.
11. Что такое излучение?
12. Напишите формулу теплового потока, передаваемого излучением от одной поверхности к другой.
13. Физический смысл коэффициента лучистой теплоотдачи.
14. Как называется сопротивление теплопередаче замкнутой воздушной прослойки в ограждающей конструкции?
15. Из тепловых потоков какой природы состоит общий тепловой поток через воздушную прослойку?
16. Какой природы тепловой поток превалирует в тепловом потоке через воздушную прослойку?
17. Как влияет толщина воздушной прослойки на распределение потоков в ней.
18. Как уменьшить тепловой поток через воздушную прослойку?


Тепловлагопередача через наружные ограждения

Основы теплопередачи в здании

Перемещение теплоты всегда происходит от более теплой среды к более холодной. Процесс переноса теплоты из одной точки пространства в другую за счет разности температуры называется теплопередачей и является собирательным, так как включает в себя три элементарных вида теплообмена: теплопроводность (кондукцию), конвекцию и излучение . Таким образом, потенциалом переноса теплоты является разность температуры .

Теплопроводность

Теплопроводность - вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность - это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.

Большинство строительных материалов являются пористыми телами . В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.

Ограждающие конструкции здания, как правило, является плоско-параллельными стенками , теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях , то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале , который описывается уравнением Фурье:

где q T - поверхностная плотность теплового потока , проходящего через плоскость, перпендикулярную тепловому потоку , Вт/м 2 ;

λ - теплопроводность материала , Вт/м. о С;

t - температура, изменяющаяся вдоль оси x, оС;

Отношение , носит название градиента температуры , о С/м, и обозначается grad t . Градиент температуры направлен в сторону возрастания температуры, которое связано с поглощением теплоты и уменьшением теплового потока. Знак минус, стоящий в правой части уравнения (2.1), показывает, что увеличение теплового потока не совпадает с увеличением температуры.

Теплопроводность λ является одной из основных тепловых характеристик материала. Как следует из уравнения (2.1) теплопроводность материала - это мера проводимости теплоты материалом, численно равная тепловому потоку, проходящему сквозь 1 м 2 площади, перпендикулярной направлению потока, при градиенте температуры вдоль потока, равном 1 о С/м (рис.1). Чем больше значение λ, тем интенсивнее в таком материале процесс теплопроводности, больше тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с теплопроводностью менее 0,3 Вт/м. о С.

Изотермы; - ------ - линии тока теплоты.

Изменение теплопроводности строительных материалов с изменением их плотности происходит из-за того, что практически любой строительный материал состоит из скелета - основного строительного вещества и воздуха. К.Ф. Фокин для примера приводит такие данные: теплопроводность абсолютно плотного веществе (без пор) в зависимости от природы имеет теплопроводность от 0,1 Вт/м о С (у пластмассы) до 14 Вт/м о С (у кристаллических веществ при потоке теплоты вдоль кристаллической поверхности), в то время как воздух имеет теплопроводность около 0,026 Вт/м о С. Чем выше плотность материала (меньше пористость), тем больше значение его теплопроводности. Понятно, что легкие теплоизоляционные материалы имеют сравнительно небольшую плотность.

Различия в пористости и в теплопроводности скелета приводит к различию в теплопроводности материалов, даже при одинаковой их плотности. Например, следующие материалы (табл.1) при одной и той же плотности, ρ 0 =1800 кг/м 3 , имеют различные значения теплопроводности:

Таблица 1.

Теплопроводность материалов с одинаковой плотностью 1800 кг/м 3 .

С уменьшением плотности материала его теплопроводность l уменьшается, так как снижается влияние кондуктивной составляющей теплопроводности скелета материала, но, однако при этом возрастает влияние радиационной составляющей. Поэтому, уменьшение плотности ниже некоторого значения приводит к росту теплопроводности. То есть существует некоторое значение плотности, при котором теплопроводность имеет минимальное значение. Существуют оценки того, что при 20 о С в порах диаметром 1мм теплопроводность излучением составляет 0,0007 Вт/ (м°С), диаметром 2 мм - 0,0014 Вт/ (м°С) и т.д. Таким образом, теплопроводность излучением становится значимой у теплоизоляционных материалов с малой плотностью и значительными размерами пор.

Теплопроводность материала увеличивается с повышением температуры, при которой происходит передача теплоты. Увеличение теплопроводности материалов объясняется возрастанием кинетической энергии молекул скелета вещества. Увеличивается также и теплопроводность воздуха в порах материала, и интенсивность передачи в них теплоты излучением. В строительной практике зависимость теплопроводности от температуры большого значения не имеет.д.ля пересчета значений теплопроводности материалов, полученных при температуре до 100 о С, на значения их при 0 о С служит эмпирическая формула О.Е. Власова:

λ о = λ t / (1+β . t), (2.2)

где λ о - теплопроводность материала при 0 о С;

λ t - теплопроводность материала при t о С;

β - температурный коэффициент изменения теплопроводности, 1/ о С, для различных материалов, равный около 0,0025 1/ о С;

t - температура материала, при которой его коэффициент теплопроводности равен λ t .

Для плоской однородной стенки толщиной δ (рис.2) тепловой поток, передаваемый теплопроводностью через однородную стенку, может быть выражен уравнением:

где τ 1 ,τ 2 - значения температуры на поверхностях стенки, о С.

Из выражения (2.3) следует, что распределение температуры по толщине стенки линейное. Величина δ/λ названа термическим сопротивлением материального слоя и обозначена R Т , м 2. о С/Вт:

Рис.2. Распределение температуры в плоской однородной стенке

Следовательно, тепловой поток q Т , Вт/м 2 , через однородную плоскопараллельную стенку толщиной δ , м, из материала с теплопроводностью λ, Вт/м. о С, можно записать в виде

Термическое сопротивление слоя - это сопротивление теплопроводности, равное разности температуры на противоположных поверхностях слоя при прохождении через него теплового потока с поверхностной плотностью 1 Вт/м 2 .

Теплообмен теплопроводностью имеет место в материальных слоях ограждающих конструкций здания.

Конвекция

Конвекция - перенос теплоты движущимися частицами вещества. Конвекция имеет место только в жидких и газообразных веществах, а также между жидкой или газообразной средой и поверхностью твердого тела. При этом происходит передача теплоты и теплопроводностью. Совместное воздействие конвекции и теплопроводности в пограничной области у поверхности называют конвективным теплообменом.

Конвекция имеет место на наружной и внутренней поверхностях ограждений здания. В теплообмене внутренних поверхностей помещения конвекция играет существенную роль. При различных значениях температуры поверхности и прилегающего к ней воздуха происходит переход теплоты в сторону меньшей температуры. Тепловой поток, передаваемый конвекцией, зависит от режима движения жидкости или газа, омывающих поверхность, от температуры, плотности и вязкости движущейся среды, от шероховатости поверхности, от разности между температурами поверхности и омывающей ее среды.

Процесс теплообмена между поверхностью и газом (или жидкостью) протекает по-разному в зависимости от природы возникновения движения газа. Различают естественную и вынужденную конвекцию. В первом случае движение газа происходит за счет разности температуры поверхности и газа, во втором - за счет внешних для данного процесса сил (работы вентиляторов, ветра).

Вынужденная конвекция в общем случае может сопровождаться процессом естественной конвекции, но так как интенсивность вынужденной конвекции заметно превосходит интенсивность естественной, то при рассмотрении вынужденной конвекции естественной часто пренебрегают.

В дальнейшем будут рассматриваться только стационарные процессы конвективного теплообмена, предполагающие постоянство во времени скорости и температуры в любой точке воздуха. Но так как температура элементов помещения изменяется довольно медленно, полученные для стационарных условий зависимости могут быть распространены и на процесс нестационарного теплового режима помещения , при котором в каждый рассматриваемый момент процесс конвективного теплообмена на внутренних поверхностях ограждений считается стационарным. Полученные для стационарных условий зависимости могут быть распространены и на случай внезапной смены природы конвекции от естественной к вынужденной, например, при включении в помещении рециркуляционного аппарата нагрева помещения (фанкойла или сплит-системы в режиме теплового насоса). Во-первых, новый режим движения воздуха устанавливается быстро и, во-вторых, требуемая точность инженерной оценки процесса теплообмена ниже возможных неточностей от отсутствия коррекции теплового потока в течение переходного состояния.

Для инженерной практики расчетов для отопления и вентиляции важен конвективный теплообмен между поверхностью ограждающей конструкции или трубы и воздухом (или жидкостью). В практических расчетах для оценки конвективного теплового потока (рис.3) применяют уравнения Ньютона:

, (2.6)

где q к - тепловой поток, Вт, передаваемый конвекцией от движущейся среды к поверхности или наоборот;

t a - температура воздуха, омывающего поверхность стенки, о С;

τ - температура поверхности стенки, о С;

α к - коэффициент конвективной теплоотдачи на поверхности стенки, Вт/м 2. о С.

Рис.3 Конвективный теплообмен стенки с воздухом

Коэффициент теплоотдачи конвекцией, a к - физическая величина, численно равная количеству теплоты, передаваемой от воздуха к поверхности твердого тела путем конвективного теплообмена при разности между температурой воздуха и температурой поверхности тела, равной 1 о С.

При таком подходе вся сложность физического процесса конвективного переноса теплоты заключена в коэффициенте теплоотдачи, a к . Естественно, что величина этого коэффициента является функцией многих аргументов. Для практического использования принимаются весьма приближенные значения a к .

Уравнение (2.5) удобно переписать в виде:

где R к - сопротивление конвективной теплоотдаче на поверхности ограждающей конструкции, м 2. о С/Вт, равное разности температуры на поверхности ограждения и температуры воздуха при прохождении теплового потока с поверхностной плотностью 1 Вт/м 2 от поверхности к воздуху или наоборот. Сопротивление R к является величиной обратной коэффициенту конвективной теплоотдачи a к :

Излучение

Излучение (лучистый теплообмен) - перенос теплоты с поверхности на поверхность через лучепрозрачную среду электромагнитными волнами, трансформирующимися в теплоту (рис.4).

Рис.4. Лучистый теплообмен между двумя поверхностями

Любое физическое тело, имеющее температуру отличную от абсолютного нуля, излучает в окружающее пространство энергию в виде электромагнитных волн. Свойства электромагнитного излучения характеризуются длиной волны. Излучение, которое воспринимается как тепловое и имеющее длины волн в диапазоне 0,76 - 50 мкм, называется инфракрасным.

Например, лучистый теплообмен происходит между поверхностями, обращенными в помещение, между наружными поверхностями различных зданий, поверхностями земли и неба. Важен лучистый теплообмен между внутренними поверхностями ограждений помещения и поверхностью отопительного прибора. Во всех этих случаях лучепрозрачной средой, пропускающей тепловые волны, является воздух.

В практике расчетов теплового потока при лучистом теплообмене используют упрощенную формулу. Интенсивность передачи теплоты излучением q л, Вт/м 2 , определяется разностью температуры поверхностей, участвующих в лучистом теплообмене:

, (2.9)

где τ 1 и τ 2 - значения температуры поверхностей, обменивающихся лучистой теплотой, о С;

α л - коэффициент лучистой теплоотдачи на поверхности стенки, Вт/м 2. о С.

Коэффициент теплоотдачи излучением, a л - физическая величина, численно равная количеству теплоты, передаваемой от одной поверхности к другой путем излучения при разности между температурой поверхностей, равной 1 о С.

Введем понятие сопротивления лучистой теплоотдачеR л на поверхности ограждающей конструкции, м 2. о С/Вт, равное разности температуры на поверхностях ограждений, обменивающихся лучистой теплотой, при прохождении с поверхности на поверхность теплового потока с поверхностной плотностью 1 Вт/м 2 .

Тогда уравнение (2.8) можно переписать в виде:

Сопротивление R л является величиной обратной коэффициенту лучистой теплоотдачи a л :

Термическое сопротивление воздушной прослойки

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек , расположенных между слоями ограждающей конструкции, называют термическим сопротивлением R в. п, м 2. о С/Вт.

Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис.5. Теплообмен в воздушной прослойке

Тепловой поток, проходящий через воздушную прослойку q в. п , Вт/м 2 , складывается из потоков, передаваемых теплопроводностью (2) q т , Вт/м 2 , конвекцией (1) q к , Вт/м 2 , и излучением (3) q л, Вт/м 2 .

q в. п =q т +q к +q л . (2.12)

При этом доля потока, передаваемого излучением самая большая. Рассмотрим замкнутую вертикальную воздушную прослойку, на поверхностях которой разность температуры составляет 5 о С. С увеличением толщины прослойки от 10 мм до 200 мм доля теплового потока за счет излучения возрастает с 60% до 80%. При этом доля теплоты, передаваемой путем теплопроводности, падает от 38% до 2%, а доля конвективного теплового потока возрастает с 2% до 20% .

Прямой расчет этих составляющих достаточно громоздок. Поэтому в нормативных документах приводятся данные о термических сопротивлениях замкнутых воздушных прослоек, которые в 50-х годах ХХ века была составлена К.Ф. Фокиным по результатам экспериментов М.А. Михеева. При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги, затрудняющей лучистый теплообмен между поверхностями, обрамляющими воздушную прослойку, термическое сопротивление следует увеличить в два раза. Для увеличения термического сопротивления замкнутыми воздушными прослойками рекомендуется иметь в виду следующие выводы из исследований:

1) эффективными в теплотехническом отношении являются прослойки небольшой толщины;

2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну большой;

3) воздушные прослойки желательно располагать ближе к наружной поверхности ограждения, так как при этом в зимнее время уменьшается тепловой поток излучением;

4) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий;

5) для сокращения теплового потока, передаваемого излучением, можно одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения около ε=0,05. Покрытие фольгой обеих поверхностей воздушной прослойки практически не уменьшает передачу теплоты по сравнению с покрытием одной поверхности.

Вопросы для самоконтроля

1. Что является потенциалом переноса теплоты?

2. Перечислите элементарные виды теплообмена.

3. Что такое теплопередача?

4. Что такое теплопроводность?

5. Что такое коэффициент теплопроводности материала?

6. Напишите формулу теплового потока, передаваемого теплопроводностью в многослойной стенке при известных температурах внутренней t в и наружной t н поверхностей.

7. Что такое термическое сопротивление?

8. Что такое конвекция?

9. Напишите формулу теплового потока, передаваемого конвекцией от воздуха к поверхности.

10. Физический смысл коэффициента конвективной теплоотдачи.

11. Что такое излучение?

12. Напишите формулу теплового потока, передаваемого излучением от одной поверхности к другой.

13. Физический смысл коэффициента лучистой теплоотдачи.

14. Как называется сопротивление теплопередаче замкнутой воздушной прослойки в ограждающей конструкции?

15. Из тепловых потоков какой природы состоит общий тепловой поток через воздушную прослойку?

16. Какой природы тепловой поток превалирует в тепловом потоке через воздушную прослойку?

17. Как влияет толщина воздушной прослойки на распределение потоков в ней.

18. Как уменьшить тепловой поток через воздушную прослойку?

ВОЗДУШНАЯ ПРОСЛОЙКА , один из видов изолирующих слоев, уменьшающих теплопроводность среды. В последнее время значение воздушной прослойки особенно возросло в связи с применением в строительном деле пустотелых материалов. В среде, разделенной воздушной прослойкой, тепло передается: 1) путем лучеиспускания поверхностей, прилегающих к воздушной прослойке, и путем теплоотдачи между поверхностью и воздухом и 2) путем переноса тепла воздухом, если он подвижен, или путем передачи тепла одними частицами воздуха другим вследствие теплопроводности его, если он неподвижен, причем опыты Нуссельта доказывают, что более тонкие прослойки, в которых воздух может считаться почти неподвижным, обладают меньшим коэффициентом теплопроводности k, чем более толстые прослойки, но с возникающими в них конвекционными течениями. Нуссельт дает следующее выражение для определения количества тепла, передаваемого в час воздушной прослойкой:

где F - одна из поверхностей, ограничивающих воздушную прослойку; λ 0 - условный коэффициент, числовые значения которого, зависящие от ширины воздушной прослойки (е), выраженной в м, даются в прилагаемой табличке:

s 1 и s 2 - коэффициенты лучеиспускания обеих поверхностей воздушной прослойки; s - коэффициент лучеиспускания абсолютно черного тела, равный 4,61; θ 1 и θ 2 - температуры поверхностей, ограничивающих воздушную прослойку. Подставляя в формулу соответствующие значения, можно получить нужные для расчетов величины k (коэффициент теплопроводности) и 1/k (изолирующей способности) воздушных прослоек различной толщины. С. Л. Прохоров составил по данным Нуссельта диаграммы (см. фиг.), показывающие изменение величин k и 1/k воздушных прослоек в зависимости от их толщины, причем наивыгоднейшим участком является участок от 15 до 45 мм.

Меньшие воздушные прослойки практически трудноосуществимы, а большие дают уже значительный коэффициент теплопроводности (около 0,07). Следующая таблица дает величины k и 1/k для различных материалов, причем для воздуха дано несколько значений этих величин в зависимости от толщины слоя.

Т. о. видно, что часто бывает выгоднее делать несколько более тонких воздушных прослоек, чем применять те или другие изолирующие слои. Воздушная прослойка толщиной до 15 мм может считаться изолятором с неподвижным слоем воздуха, при толщине 15-45 мм - с почти неподвижным и, наконец, воздушные прослойки толщиной свыше 45-50 мм должны признаваться прослойками с возникающими в них конвекционными течениями и потому подлежащими расчету на общем основании.