Паропроницаемость минеральной ваты. Паропроницаемость теплоизоляции

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Как только наступают холода, многие владельцы объектов недвижимости хватаются за голову. Ведь жилье в который раз оказывается не готово к зиме! Теплоизоляция стен влияет напрямую на то, насколько комфортно находиться в доме и каким будет в нем микроклимат, когда зачастят дожди, подует северный ветер и грянут морозы. О том, чтобы дом был хорошо защищен от неблагоприятных погодных факторов, нужно обязательно заботиться заранее. Какой утеплитель выбрать из широкого спектра предложений на современном строительном рынке? Какие материалы нужны, чтобы защитить дом?

Наиболее эффективно использовать пенопласт для наружного утепления

На какие свойства материала необходимо обратить особое внимание?

При выборе утеплителя надо сразу же определиться со списком требований, которым должен соответствовать материал. На какие свойства материала надо обратить особое внимание? Основные из них:

  • показатель теплоизоляции;
  • паропроницаемость;
  • экологичность;
  • долговечность;
  • цена;
  • пожаробезопасность.

Главный пункт - показатель теплоизоляции. Чем выше он у утеплителя, тем качественнее материал защитит дом, обеспечив ему достойную теплоизоляцию. Обязательно обратите внимание на вес материала. Чем легче утеплитель, тем меньше будет с ним проблем. Небольшой вес строительного или отделочного материала - это всегда двойная выгода. Во-первых, возможно реально сэкономить на его транспортировке. Во-вторых, монтаж такого утеплителя можно выполнить быстро, даже без помощи специалистов. Если утеплитель тяжелый, он способен принести массу проблем. Дело в том, что несущие стены рассчитаны на определенную нагрузку. Если утепляющий материал обладает значительным весом, то придется укреплять несущие конструкции дома.

Паропроницаемость - немаловажный момент в оценке качества утеплителя. Чем выше паропроницаемость материала, тем лучше его качество. Если утеплитель обладает хорошей паропроницаемостью, лишняя влага испаряется из помещения, в здании не появляется парниковый эффект, нет плесени, грибка. При этом нет нарушений в естественной вентиляции и прочих «прелестей». При выборе теплоизоляции важно обратить внимание на возможность декорирования ее поверхности. Если утеплитель легко сверху декорировать, это еще одна существенная экономия на отделке поверхности стен. Капитальный ремонт здания обычно владельцы объектов недвижимости осуществляют раз в несколько лет.

Вернуться к оглавлению

Сани надо готовить летом!

Варианты внешней теплоизоляции стен.

Нередки случаи, когда в ходе ремонта выясняется: старый утеплитель утерял свои эксплуатационные характеристики, то есть разложился или сгнил. И тогда приходится тратить значительные средства на покупку нового материала и вновь выполнять теплоизоляцию стен.

Обязательно надо обратить внимание на экологичность утеплителя, который предполагаете купить. Продавцы и производители не всегда правдиво отвечают на вопросы об экологической безопасности материала. Потому лучше потратить немного времени и посмотреть об утеплителях отзывы на строительных специализированных форумах либо проконсультироваться со специалистами в строительно-ремонтных работах. Горючесть утеплителя - очень важный момент. Безопасность людей, живущих в доме, напрямую зависит от того, насколько пожаробезопасны материалы, примененные в его отделке и строительстве. Выбирая пожароопасный утеплитель, владелец объекта недвижимости автоматически ставит под угрозу жизнь и здоровье находящихся в доме людей.

Цена на тот или иной утеплитель напрямую зависит от его качества. Для владельцев домов часто выбор определяет именно его цена. Однако когда наступает холодное время года, приходит понимание: покупка и монтаж дешевого утеплителя обернулись возросшими расходами на отопление здания. И еще один момент: между внутренним и внешним утеплением дома всегда лучше выбирать второе. Утеплитель, применяемый для внешних отделочных работ, стоит существенно дороже, но он лучше защитит дом, обеспечив ему более качественную теплоизоляцию, чем утеплители, используемые внутри. Внешнее утепление - оптимальный вариант для зданий, построенных из любых материалов.

Вернуться к оглавлению

Перечень утеплителей

Пеноизол не подвержен горению и хорошо выдерживает влажность и перепады температур.

Современный рынок предлагает различные виды утеплителей. Чтобы не запутаться в огромном количестве их типов, видов и марок, лучше рассматривать утеплители с той точки зрения, какой материал является в них главным или единственным компонентом.

Виды утеплителей:

  • пенополистирол;
  • экструдированный пенополистирол;
  • пенофол фольгированный;
  • эко-вата;
  • пеноизол;
  • пеностекло;
  • фибролит;
  • пеноизол.

Вернуться к оглавлению

Выбор велик, но что лучше?

Пенополистирол - утеплитель, который без проблем прослужит 25 лет. Его обычно не смешивают с другими компонентами, а используют в качестве самостоятельного теплоизоляционного материала. Утеплить дом своими силами с его помощью очень легко. Пенополистирол отлично декорируется. Цена на него небольшая, но для утепления крыши данный материал абсолютно не подходит. И у такого утеплителя есть один существенный недостаток: он очень горюч, использовать его для утепления деревянных строений нельзя.

Минвату можно разрезать на любые куски, что удобно при работе с неровными поверхностями.

Экструдированный пенополистирол - выбор тех домовладельцев, кому нужен утеплитель со сроком эксплуатации 50 лет. Он без проблем подвергается отделке. Но у экструдированного пенополистирола целых 2 минуса: он пожароопасен и обладает низкой паропроницаемостью. Если в отделке дома все же решено применять данный утеплитель, обязательно надо позаботиться о дополнительной вентиляции здания и потратить на ее обустройство дополнительные средства. Есть и еще один немаловажный нюанс: оба вида пенополистирола теряют свои качества от ультрафиолетового излучения. Утеплитель из минеральной ваты в ряде случаев владельцы объектов недвижимости выбирают вместо пенополистирола, путая из-за названия со стекловатой.

Минеральная вата стоит значительно дороже. Ее основа - базальтовое волокно. Минеральная вата легка, но прослужит только 25 лет. По своим технико-эксплуатационным характеристикам она значительно лучше пенополистирола.

Напыляемый полиуретан достаточно дорог, непрактичен и требует дополнительной защиты от ультрафиолетовых лучей, хоть и считается модным утеплителем. Поклонники экологически чистых материалов уверяют, что лучший утеплитель - эковата. Ее плюс: она изготовлена из натуральных материалов. Ее минус: она горюча. Если выбор состоит в том, приобрести пеноизол или пеностекло, лучше проанализировать те цели, ради которых будет осуществляться утепление. Пеноизол практичен. Его можно применять в качестве заливки. Но он боится влаги и ультрафиолетовых лучей. Пеностекло пожаробезопасно и очень долговечно, но цена на него значительно выше. Потребуется еще расходование дополнительных средств для приобретения вытяжки.
Сейчас появился новый теплоизоляционный материал - альфоль. Он представляет собой ленту гофрированной бумаги, сверху которой наклеена алюминиевая фольга. Такой вид теплоизоляционного материала имеет высокую отражающую способность в сочетании с низкой теплопроводностью воздуха.

Выбор утеплителя - это не всегда выбор цены.

От того, насколько правильно сделан выбор утеплителя, зависит - напрасно или нет будут потрачены на него средства.

Надо уметь комбинировать эти материалы, исходя из полезных свойств различных материалов, и тогда дом всегда будет теплым.


Таблица паропроницаемости - это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость - это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение - это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение - это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость - это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой - разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция - это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции - это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов - это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Таблица паропроницаемости материалов.

Материал

Коэффициент паропроницаемости, мг/(м*ч*Па)

Алюминий

Арболит, 300 кг/м3

Арболит, 600 кг/м3

Арболит, 800 кг/м3

Асфальтобетон

Вспененный синтетический каучук

Гипсокартон

Гранит, гнейс, базальт

ДСП и ДВП, 1000-800 кг/м3

ДСП и ДВП, 200 кг/м3

ДСП и ДВП, 400 кг/м3

ДСП и ДВП, 600 кг/м3

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Известняк, 1400 кг/м3

Известняк, 1600 кг/м3

Известняк, 1800 кг/м3

Известняк, 2000 кг/м3

Керамзит (насыпной, т.е. гравий), 200 кг/м3

0,26; 0,27 (СП)

Керамзит (насыпной, т.е. гравий), 250 кг/м3

Керамзит (насыпной, т.е. гравий), 300 кг/м3

Керамзит (насыпной, т.е. гравий), 350 кг/м3

Керамзит (насыпной, т.е. гравий), 400 кг/м3

Керамзит (насыпной, т.е. гравий), 450 кг/м3

Керамзит (насыпной, т.е. гравий), 500 кг/м3

Керамзит (насыпной, т.е. гравий), 600 кг/м3

Керамзит (насыпной, т.е. гравий), 800 кг/м3

Керамзитобетон, плотность 1000 кг/м3

Керамзитобетон, плотность 1800 кг/м3

Керамзитобетон, плотность 500 кг/м3

Керамзитобетон, плотность 800 кг/м3

Керамогранит

Кирпич глиняный, кладка

Кирпич керамический пустотелый (1000 кг/м3 брутто)

Кирпич керамический пустотелый (1400 кг/м3 брутто)

Кирпич, силикатный, кладка

Крупноформатный керамический блок (тёплая керамика)

Линолеум (ПВХ, т.е. ненатуральный)

Минвата, каменная, 140-175 кг/м3

Минвата, каменная, 180 кг/м3

Минвата, каменная, 25-50 кг/м3

Минвата, каменная, 40-60 кг/м3

Минвата, стеклянная, 17-15 кг/м3

Минвата, стеклянная, 20 кг/м3

Минвата, стеклянная, 35-30 кг/м3

Минвата, стеклянная, 60-45 кг/м3

Минвата, стеклянная, 85-75 кг/м3

ОСП (OSB-3, OSB-4)

Пенобетон и газобетон, плотность 1000 кг/м3

Пенобетон и газобетон, плотность 400 кг/м3

Пенобетон и газобетон, плотность 600 кг/м3

Пенобетон и газобетон, плотность 800 кг/м3

Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3

Пенополистирол экструдированный (ЭППС, XPS)

0,005 (СП); 0,013; 0,004

Пенополистирол, плита

Пенополиуретан, плотность 32 кг/м3

Пенополиуретан, плотность 40 кг/м3

Пенополиуретан, плотность 60 кг/м3

Пенополиуретан, плотность 80 кг/м3

Пеностекло блочное

0 (редко 0,02)

Пеностекло насыпное, плотность 200 кг/м3

Пеностекло насыпное, плотность 400 кг/м3

Плитка (кафель) керамическая глазурованная

Плитка клинкерная

низкая; 0,018

Плиты из гипса (гипсоплиты), 1100 кг/м3

Плиты из гипса (гипсоплиты), 1350 кг/м3

Плиты фибролитовые и арболит, 400 кг/м3

Плиты фибролитовые и арболит, 500-450 кг/м3

Полимочевина

Полиуретановая мастика

Полиэтилен

Раствор известково-песчаный с известью (или штукатурка)

Раствор цементно-песчано-известковый (или штукатурка)

Раствор цементно-песчаный (или штукатурка)

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Эковата целлюлозная

Экструдированный или экструзионный пенополистирол (ЭПС, ЭППС, XPS), стиропор (ПСВ / EPS) и пенопласт (ПСБ-С, пенополистирол, стиропор) широко применяются в России в качестве теплоизоляционного материала (утепителя). К сожалению, производители зачастую умалчивают о том, что из-за отсутствия паропроницаемости данные материал могут приводить к появлению грибков и плесени. Особенно это касается не паропроницаемого экструзионного пенопполистирола, которым по этой причине утеплять кирпичные и бетонные стены не рекомендуется.

Но недавно мне попался на глаза премиальный коттеджный поселок под Питером, в котором применялись импортные материалы, в том числе бельгийский кирпич и утеплитель пенополистирол Neopor. Я был шокирован тем, что такие дома назвали экодомами. Пассивный дом при применении 400 мм кирпичной кладки, а также 350 мм утеплителя Neopor (Неопор) на стенах, 300 мм экструзионного пенополистирола под фундаментной плитой, 400 мм утеплителя Neopor (Неопор) на плитах перекрытия в разбежку - это конечно отлично. Тем более, что германскому стандарту Passive House в России соответствует очень небольшое количество домов. Но экодом...

К тому же, странным казался выбор именно пенополистирола, пусть и от германского производителя BASF, в качестве утеплителя. Возможно, что это стремление сделать все по западной кальке и из западных материалов. Но мне гораздо более разумным кажется применение в из кирпича (пеностекольной крошки) или .

Оказалось, что Neopor (Неопор) - это новое поколение расширяющегося пенополистирола (EPS) от BASF. В русскоязычных брошюрах "Изоляция стен Neopor (BASF)" и "Neopor. Расширяющийся полистирол (EPS). Инновационная изоляция ИИ.", к сожалению, информация о паропрозрачности данного материала отсутствует полностью. Весь упор на черные гранулы графита, которые позволяют уменьшить толщину утеплителя процентов на 15, при этом сохраняя коэффициент теплопроводности.

Информация про Neopor на сайте BASF на русском языке вообще скудная. А вот на английском можно найти уже более интересные вещи. Например, следующее:


Water and Neopor are good friends.

Neopor Rigid Thermal Insulation is a closed- cell foam, but not all closed-cell foams are created equally. Neopor Rigid Thermal has a Class III Vapor Permeability rating of between 2.5 and 5.5 depending on thickness and density. This means walls constructed with Neopor as Continuous Insulation can more easily transport water vapor, reducing the likelihood of mold, mildew and structural damage. And, Neopor Rigid Thermal Insulation has low water absorption relative to traditional insulation materials.

Попробую перевести:


Вода и Neopor (Неопор) - хорошие друзья.

Твердая теплоизоляция Neopor - это пена с закрытыми ячейками, но не все закрытые ячейки сделаны одинаково. Neopor Rigid Thermal имеет 3 класс паропроницаемости в диапазоне от 2.5 до 5.5, в зависимости от толщины и плотности. Это означает, что стены, построенные с применением Neopor в качестве непрерывной изоляции могут легко переносить пар, уменьшая вероятность возникновения плесени, ложной мучнистой росы, а также структурного повреждения. Твердая теплоизоляция Neopor имеет меньшее абсорбирование воды, по сравнению с традиционным изоляционными материалами.

В российских источниках мне встретилась информация от том, что паропроницаемость Неопора составляет не менее 0,05 мг / (м.ч.Па). Но не уверен, что этим данным можно доверять. У бетона паропроницаемость меньше. А вот у кирпича уже больше, причем сильно различается от того, какой именно кирпич. Так что все правильно указано про снижении вероятности возникновения грибков и плесени. Если уж и использовать экструдированный пенополистирол, стиропор или пенопласт для утепления каменных стен, то именно подобный паропроницаемый (т.е. экструзионный пенополистирол сразу отпадает). Хотя у экологически чистых, негорючих и долговечных - пеностекольной крошки и вермикулита - даже с паропроницаемостью все намного лучше. В любом случае помимо экологичности обращайте внимание на то, чтобы долговечность утеплителя соответствовала долговечности стен дома, а паропроницаемость утеплителя была на уровне паропроницаемости стен или выше.

Безусловно проблему с утеплителями, которые не выводят пар можно решать при помощи принудительной вентиляции, а также при помощи внутренней отделки, блокирующей прохождение пара. Но стоит ли так делать, решать вам. Тем более, что при такой борьбе с причиной всегда остается шанс, что что-то пойдет не так, в том числе из-за ошибки отделочников или поломки оборудования.



В общем, будьте осторожны, когда читаете маркетинговые буклеты, даже если это премиальный сегмент. Красивые картинки и импортные материалы - это еще не гарантия качества и экологичности. Безусловно за 60 миллионов рублей в случае с Райт Парк коттедж получается с очень интересными решениями и качественными материалами. Но мне я бы за такие деньги все равно избегал решений, подобных данному от компании ООО "Актив Хаус".

Для начала опровергнем заблуждение - «дышит» не ткань, а наше тело. Точнее, поверхность кожи. Человек относится к числу тех животных, чей организм стремится поддерживать температуру тела постоянной вне зависимости от условий внешней среды. Одним из важнейших механизмов нашей терморегуляции являются сокрытые в коже потовые железы. Они же являются частью выделительной системы организма. Выделяемый ими пот, испаряясь с поверхности кожи, уносит с собой часть избыточного тепла. Поэтому, когда нам жарко - мы потеем во избежание перегрева.

Однако, у этого механизма есть один серьёзный недостаток. Влага, быстро испаряясь с поверхности кожи, может спровоцировать переохлаждение, которое приводит к простудным заболеваниям. Конечно, в Центральной Африке, где человек эволюционировал как вид, такая ситуация - скорее редкость. Но в регионах с переменчивой и преимущественно прохладной погодой человеку постоянно приходилось и приходится дополнять свои естественные механизмы терморегуляции различной одеждой.

Способность одежды «дышать» подразумевает её минимальное сопротивление отводу испарений от поверхности кожи и «умение» транспортировать их на лицевую сторону материала, где выделенная человеком влага может улетучиться, «не украв» избыточное количество тепла. Таким образом, «дышащий» материал, из которого изготовлена одежда, помогает организму человека поддерживать оптимальную температуру тела, не допуская перегрева или переохлаждения.

«Дышащие» свойства современных тканей принято описывать в рамках двух параметров - «паропроницаемость» и «воздухопроницаемость». В чём между ними разница и как это влияет на их применение в одежде для спорта и активного отдыха?

Что такое паропроницаемость?

Паропроницаемость - это способность материала пропускать или задерживать водяной пар. В индустрии производства одежды и снаряжения для активного отдыха важное значение имеет высокая способность материала к транспорту водяного пара . Чем она выше, тем лучше, т.к. это позволяет избежать пользователю перегрева и при этом оставаться сухим.

Определённой паропроницаемостью обладают все использующиеся сегодня ткани и утеплители. Однако в численном выражении она представлена только для описания свойств мембран, применяющихся в производстве одежды, и для очень малого количества не водонепроницаемых текстильных материалов. Чаще всего паропроницаемость измеряют в г/м²/24 часа, т.е. количество водяного пара, которое пройдёт через квадратный метр материала за сутки .

Обозначается этот параметр аббревиатурой MVTR («moisture vapor transmission rate» или «скорость прохождения водяного пара» ).

Чем выше значение, тем большей паропроницаемостью обладает материал.

Как измеряют паропроницаемость?

Цифры MVTR получают в результате лабораторных тестов, основанных на различных методиках. В связи с большим количеством переменных, влияющих на работу мембраны - индивидуальный метаболизм, давление и влажность воздуха, площадь материала, пригодная для транспорта влаги, скорость ветра и пр., единого стандартизированного метода исследований для определения паропроницаемости не существует. Поэтому для того, чтобы иметь возможность сравнивать образцы тканей и мембран между собой, производители материалов и готовой одежды используют целый ряд методик. Каждая из них в отдельности описывает паропроницаемость ткани или мембраны в определённом диапазоне условий. Сегодня наиболее часто применяются следующие тестовые методики:

«Японский» тест с «вертикально стоящей чашкой» (JIS L 1099 A-1)

Тестовый образец растягивается и герметично фиксируется поверх чашки, внутрь которой помещён сильный влагопоглотитель - хлорид кальция (CaCl2). Чашка помещается на определённое время в термогидростат, в котором поддерживается температура воздуха 40°C и влажность 90%.

В зависимости от того, как изменится вес влагопоглотителя за контрольное время, определяется MVTR. Методика хорошо подходит для определения паропроницаемости не водонепроницаемых тканей, т.к. тестируемый образец не находится в прямом контакте с водой.

«Японский» тест с «перевёрнутой чашкой» (JIS L 1099 B-1)


Тестовый образец растягивается и герметично фиксируется над сосудом с водой. После он переворачивается и помещается над чашкой с сухим влагопоглотителем - хлоридом кальция. Через контрольное время влагопоглотитель взвешивается, в результате чего вычисляется MVTR.

Тест B-1 наиболее популярен, так как демонстрирует наибольшие цифры среди всех методик, определяющих скорость прохождения водяных паров. Чаще всего именно его результаты публикуют на ярлыках. У наиболее «дышащих» мембран показатель MVTR по тесту B1 больше или равен 20 000 г/м²/24ч по тесту B1. Ткани со значениями 10-15 000 можно отнести к ощутимо паропроницаемым, по крайней мере в рамках не очень интенсивных нагрузок. Наконец, для одежды, предполагающей малую подвижность часто оказывается достаточно паропроницаемости в пределах 5-10 000 г/м²/24ч.

Метод теста JIS L 1099 B-1 довольно точно иллюстрирует работу мембраны в идеальных условиях (когда на её поверхности есть конденсат и влага транспортируется в более сухую среду, обладающую меньшей температурой).

Тест с «потеющей пластиной» или RET (ISO - 11092)


В отличие от тестов, определяющих скорость транспорта водяного пара сквозь мембрану, методика RET исследует то, насколько тестируемый образец сопротивляется прохождению водяного пара.

Образец ткани или мембраны помещается поверх плоской пористой металлической пластины, под которую подведён нагревательный элемент. Температура пластины поддерживается на уровне температуры поверхности человеческой кожи (около 35°C). Вода, испаряющаяся от нагревательного элемента, проходит через пластину и тестируемый образец. Это приводит к потерям тепла на поверхности пластины, температура которой должна поддерживаться постоянной. Соответственно, чем выше уровень энергозатрат для поддержания температуры пластины постоянной, тем ниже сопротивляемость тестируемого материала к прохождению сквозь него водяного пара. Обозначается этот параметр как RET (Resistance of Evaporation of a Textile - «сопротивление материала испарению» ). Чем ниже значение RET, тем выше «дышащие» свойства тестируемого образца мембраны или иного материала.

    RET 0-6 - экстремально дышащие; RET 6-13 - хорошо дышащие; RET 13-20 - дышащие; RET более 20 - не дышащие.


Оборудование для проведения теста ISO-11092. Справа - камера с «потеющей пластиной». Компьютер необходим для получения и обработки результатов и контроля процедуры теста © thermetrics.com

В лаборатории института Hohenstein, с которым сотрудничают Gore-Tex, эта методика дополнена тестированием реальных образцов одежды людьми на беговой дорожке. В этом случае результаты тестов с «потеющей пластиной» корректируются в соответствии с замечаниями испытателей.


Тестирование одежды с Gore-Tex на беговой дорожке © goretex.com

Тест RET наглядно иллюстрирует работу мембраны в реальных условиях, однако является также самым дорогим и продолжительным по времени в приведённом списке. По этой причине его могут позволить себе далеко не все компании-производители одежды для активного отдыха. В то же время RET является сегодня основной методикой для оценки паропроницаемости мембран от компании Gore-Tex.

Методика RET обычно хорошо коррелирует с результатами теста B-1. Другими словами, мембрана которая показала хорошие «дышащие» свойства в тесте RET, продемонстрирует хорошие «дышащие» свойства в тесте с «перевёрнутой чашкой».

К сожалению, ни одна из тестовых методик не способна заменить собой остальные. Более того, не всегда их результаты коррелируют друг с другом. Мы увидели, что процесс определения паропроницаемости материалов в различных методиках имеет множество отличий, имитируя разные условия работы.

Вдобавок, различные мембранные материалы работают по разному принципу. Так, например, поровые ламинаты обеспечивают сравнительно свободное прохождение паров воды через имеющиеся в их толще микроскопические поры, а беспоровые мембраны транспортируют влагу на лицевую поверхность как промокашка - с помощью гидрофильных полимерных цепочек в своей структуре. Вполне естественно, что один тест может имитировать выигрышные условия для работы беспоровой мембранной плёнки, например, когда влага вплотную прилегает к её поверхности, а другой - для микропористой.

Вкупе всё это означает, что сравнивать между собой материалы на основе данных, полученных от разных тестовых методик практически не имеет смысла . Также не имеет смысла сравнивать показатели паропроницаемости разных мембран, если тестовая методика хотя бы для одной из них неизвестна.

Что такое воздухопроницаемость?

Воздухопроницаемость - способность материала пропускать через себя воздух под влиянием перепада его давления. При описании свойств одежды часто употребляется синоним этого термина - «продуваемость», т.е. то, насколько материал «ветростоек».

В отличие от методик оценки паропроницаемости в этой области царит относительное однообразие. Для оценки воздухопроницаемости используется так называемый тест Фразера, который определяет, какой объём воздуха пройдёт через материал за контрольное время. Скорость воздушного потока по условиям теста обычно составляет 30 миль в час, но может меняться.

Единицей измерения служит кубический фут воздуха, проходящий через материал за одну минуту. Обозначается аббревиатурой CFM (cubic feet per minute ).

Чем больше значение - тем выше воздухопроницаемость («продуваемость») материала. Так беспоровые мембраны демонстрируют абсолютную «непродуваемость» - 0 CFM. Тестовые методики чаще всего определяются стандартами ASTM D737 или ISO 9237, которые, впрочем, дают идентичные результаты.

Точные цифры CFM публикуются производителями тканей и готовой одежды сравнительно редко. Чаще всего этот параметр используется для характеристики ветрозащитных свойств в описаниях различных материалов, разработанных и применяемых в рамках производства одежды SoftShell.

С недавних пор о воздухопроницаемости производители стали «вспоминать» гораздо чаще. Дело в том, что вместе с воздушным потоком с поверхности нашей кожи испаряется гораздо больше влаги, что снижает риск перегрева и скопления конденсата под одеждой. Так, мембрана Polartec Neoshell имеет чуть большую, чем традиционные поровые мембраны, воздухопроницаемость (0.5 CFM против 0.1). Благодаря этому Polartec удалось добиться существенно лучшей работы своего материала в условиях ветреной погоды и быстрого движения пользователя. Чем выше давление воздуха снаружи, тем лучше Neoshell отводит пары воды от тела за счёт большего воздухообмена. При этом мембрана продолжает защищать пользователя от ветрового охлаждения, блокируя порядка 99% воздушного потока. Этого оказывается достаточно, чтобы противостоять даже штормовым ветрам, и потому Neoshell нашёл себя даже в производстве однослойных штурмовых палаток (яркий пример - палатки BASK Neoshell и Big Agnes Shield 2).

Но прогресс не стоит на месте. Сегодня есть масса предложений хорошо утеплённых средних слоёв одежды с частичной воздухопроницаемостью, которые также могут использоваться как самостоятельное изделие. В них используются либо принципиально новые утеплители - как Polartec Alpha, либо применяются синтетические объёмные утеплители с очень низкой степенью миграции волокон, которые позволяют использовать менее плотные «дышащие» ткани. Так, в куртках Sivera Гамаюн используется ClimaShield Apex, в Patagonia NanoAir - утеплитель под торговой маркой FullRange™, который производится японской компанией Toray под оригинальным названием 3DeFX+. Идентичный утеплитель применяется в горнолыжных куртках и брюках компании Mountain Force в рамках технологии «12 way stretch» и горнолыжной одежде Kjus. Сравнительно высокая воздухопроницаемость тканей, в которые заключены эти утеплители позволяет создать утепляющий слой одежды, который не будет препятствовать отводу испаренной влаги с поверхности кожи, помогая пользователю избежать как намокания, так и перегрева.

SoftShell-одежде . В дальнейшем другие производители создали внушительное количество их аналогов, что привело к повсеместному распространению тонкого, сравнительно прочного, «дышащего» нейлона в одежде и снаряжении для спорта и активного отдыха.