Как работает холодильник: устройство и принцип работы основных типов холодильников. Устройство холодильной машины Устройство и принцип холодильных установок

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:

  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:

  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.

Устройство и принцип работы холодильной установки

Принцип действия холодильной установки


Для получения искусственного холода в технике используется свойство жидкости изменять свою температуру кипения в зависимости от давления.

Чтобы превратить жидкость в пар, к ней необходимо подвести некоторое количество тепла. Наоборот, превращение пара в жидкость (процесс конденсации) совершается при отнятии тепла от пара.

Холодильная установка состоит из четырех основных частей: компрессора, конденсатора, регулирующего вентиля и воздухоохладителя (испарителя), соединенных последовательно между собой трубопроводами.

В этой схеме по замкнутому контуру циркулирует холодильный агент - вещество, способное кипеть при низких температурах, зависящих от давления паров в воздухоохладителе. Чем ниже это давление, тем ниже и температура кипения. Процесс-кипения холодильного агента сопровождается отнятием тепла от окружающей среды, в которой находится воздухоохладитель, вследствие чего эта среда охлаждается.

Образующиеся в воздухоохладителе пары холодильного агента отсасываются компрессором, сжимаются в нем и нагнетаются в конденсатор. В процессе сжатия давление и температура паров холодильного агента повышается. Таким образом, компрессор создает, с одной стороны, пониженное давление в воздухоохладителе, необходимое для кипения холодильного агента при низкой температуре, и, с другой, повышенное давление нагнетания, при котором возможен переход холодильного агента из компрессора в конденсатор.

В конденсаторе происходит конденсация горячих паров холодильного агента, т. е. превращение их в жидкость. Конденсация паров осуществляется в результате отнятия от них тепла воздухом, охлаждающим конденсатор.

Для получения холода необходимо, чтобы температура кипения (испарения) холодильного агента была ниже температуры охлаждаемой среды.

Холодильная установка АР-3 представляет собой единый агрегат, смонтированный на каркасе с теплоизоляционной стенкой, отделяющей испарительную часть (воздухоохладитель) oт остального оборудования. Испарительная часть входит-в проем, сделанный в передней стенке грузового помещения. Наружный воздух засасывается через конденсатор осевым вентилятором внутрь машинного отделения.

На одном валу с вентилятором конденсатора расположен-вентилятор воздухоохладителя, осуществляющий циркуляцию-воздуха в грузовом помещении.

Таким образом, в холодильной установке АР-3 имеются две-независимые воздушные системы:
— система циркуляции охлажденного воздуха в грузовом помещении (воздух с пола грузового помещения через направляющий воздуховод засасывается осевым вентилятором в воздухоохладитель, охлаждается и выбрасывается под потолок-грузового помещения);
— система охлаждения конденсатора.

Осевым вентилятором, расположенным внутри машинного отделения, воздух засасывается из окружающей среды через-жалюзи лобовой панели кузова, поступает на конденсатор, охлаждает его и выбрасывается наружу через жалюзи, установленные на боковых дверях машинного отделения.

Для охлаждения карбюраторного двигателя воздух забирается через специальное окно в передней стенке кузова и> выбрасывается внутрь -машинного отделения. Нагретый воздух из машинного отделения выходит наружу через жалюзи боковых дверей.

Щит управления и все приборы автоматики, а также измерительные приборы расположены с левой (по ходу автомобиля) стороны холодильной установки и имеют свободный доступ.

Топливо к карбюраторному двигателю подается из бака, укрепленного в верхней части установки.

Холодильная установка представляет собой замкнутую герметическую систему, состоящую из четырех основных частей: воздухоохладителя, фреонового компрессора, конденсатора и-терморегулирующего вентиля, последовательно соединенных трубопроводами. Эта система заполнена холодильным агентом фреоном-12, который непрерывно циркулирует в ней, переходя1 из одной части в другую.

Компрессор засасывает из воздухоохладителя 8 образовавшиеся при кипении пары фреона, сжимает их до давления конденсации. Одновременно с повышением давления па«-ров повышается и их температура до 70-80 °С. Нагретые пары фреона из компрессора нагнетаются по трубопроводу в конденсатор. В конденсаторе происходит конденсация паров фреона, т. е. превращение их в жидкость. Конденсация паров осуществляется в результате отнятия от них. тепла воздухом, обдувающим наружную поверхность конденсатора.

Жидкий фреон из конденсатора поступает в ресивер (запасную емкость). Из ресивера жидкий фреон направляется в теплообменник, где, проходя по змеевикам, переохлаждается за счет теплообмена с холодными парами фреона, движущимися навстречу из воздухоохладителя. Затем жидкий фреон попадает в фильтр-осушитель, где очищается от влаги и загрязнений влагопоглощающим веществом - силикагелем.

Рис. 2. Холодильная
1 - щит управления; 2 - щит приборов; 3 - блок вентиляторов; 4 - конден 5 - фильтр-осушитель; 9- теплообменник; 10- теплоизоляционная стенка; 1ый двигатель УД-2; 15 - реле-регулятор РР24-Г; 16 - терморегулирующий прессор ФВ-6; 19 - электродвигатель А-51-2;

Из фильтра-осушителя жидкий фреон направляется в тер-морегулирующий вентиль, который служит для регулирования количества фреона, поступающего в воздухоохладитель (испаритель).

В терморегулирующем вентиле, проходя через отверстие малого диаметра, фреон дросселируется, т. е. резко понижает свое давление. При этом давление его понижается от давления конденсации до давления испарения.

Понижение давления приводит к понижению температуры фреона. Фреон в виде парожидкостной смеси поступает через распределитель жидкости в воздухоохладитель, и цикл повторяется.

Фреон, протекая по трубкам воздухоохладителя при низком давлении, интенсивно кипит и, испаряясь, переходит из жидкого состояния в парообразное.

Тепло, необходимое для испарения (скрытая теплота парообразования), воспринимается фреоном через стенки воздухо-охладителя от воздуха грузового помещения, продуваемого вентилятором через ребристую поверхность воздухоохладителя.

Рис. 3. Схема потоков воздуха в холодильной установке: А-поток воздуха для охлаждения конденсатора; Б - поток воздуха для охлаждения карбюраторного двигателя

При этих условиях температура воздуха грузового помещения понижается и продукты, находящиеся в грузовом помещении, передавая свое тепло более холодному воздуху, охлаждаются.

Терморегулирующий вентиль разделяет фреоновую систему на две части: магистраль высокого давления (давление нагнетания или конденсации) - от нагнетательной полости компрессора до терморегулирующего вентиля и магистраль низкого давления (давление всасывания или испарения) - от терморегулирующего вентиля до всасывающей полости компрессора.

Из воздухоохладителя пары фреона по всасывающему трубопроводу отсасываются компрессором и подаются в теплообменник, где они, проходя через межтрубное пространство, перегреваются жидким фреоном, проходящим по змеевику. Затем пары фреона попадают в компрессор, и далее описанный процесс циркуляции фреона в холодильной установке происходит по замкнутому циклу.

В конденсаторе фреон, превращаясь из пара в жидкость, отдает тепло продуваемому воздуху из окружающей атмосферы, а в воздухоохладителе, превращаясь из жидкости в пар, поглощает тепло воздуха грузового помещения, понижая тем самым температуру в грузовом помещении.

Таким образом, в холодильной установке совершается циркуляция холодильного агента - фреона-12, который сам не расходуется, а на получение холода затрачивается лишь механическая энергия компрессора, приводимого в действие карбюраторным или электрическим двигателем.

Мощность холодильной установки определяется холодопроизводительностью за час работы и измеряется количеством тепла (килокалорий в час), которое холодильная установка может отнять в течение часа от охлаждаемой среды, в данном случае от грузового помещения рефрижератора.

Компрессор холодильной установки приводится во вращение через клино-ременную передачу карбюраторным двигателем, а при работе от электрической сети-электродвигателем.

Со шкива компрессора движение передается также клиновым ремнем на генератор постоянного тока и вал вентиляторов, создающих потоки воздуха через конденсатор и воздухоохладитель.

Температура (от -15° до +4 °С) в грузовом помещении кузова поддерживается автоматически при помощи двухпозиционного термореле ТДДА .

Когда в грузовом помещении кузова требуется поддерживать положительную температуру, холодопроизводительность установки можно резко уменьшить при помощи регулирующего крана на всасывающем трубопроводе. При этом золотник крана должен быть повернут до упора по часовой стрелке.

Машинный способ является наиболее распространенным способом получения холода за счет изменения агрегатного состояния рабочего вещества, кипения его при низких температурах, с отводом от охлаждаемого тела или среды необходимой для этого теплоты парообразования.

Одним из условий эффективной работы торгового холодильного оборудования является применение в качестве рабочих веществ холодильных агентов, обладающих хорошими термодинамическими, теплофизическими, физико-химическими, физиологическими и озонобезопасными свойствами. Важное значение имеют также их стоимость и доступность. Холодильные агенты не должны быть ядовиты, вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.

Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным - хладоны (смеси различных фреонов).

В настоящее время существует три типа фторуглеводородных хладагентов:

хлорфторуглероды (CFC), обладающие высоким потенциалом истощения озона. Например: R12, R13, R502, R503;

гидрохлорфторуглероды (HCFC), которые содержат атомы водорода, что приводит к более короткому периоду существования этих хладагентов в атмосфере по сравнению с CFC, например хладагент R22;

гидрофторуглероды (HFC), которые не содержат хлора. Они не разрушают озоновый слой Земли и имеют короткий период существования в атмосфере. Например: R134A, R404A.

В связи с этим проблема использования в качестве хладагентов природных веществ, и в первую очередь аммиака, наиболее актуальна сейчас у производителей холодильного оборудования. В России потребность в холоде для стационарных холодильников в основном обеспечивается аммиачными холодильными установками, так как аммиак не разрушает озоновый слой, не оказывает прямого воздействия на глобальный тепловой эффект, обладает отличными термодинамическими свойствами, имеет высокий коэффициент теплоотдачи при кипении и конденсации и доступность производства.

К негативным свойствам аммиака относятся токсичность, пожаро- и взрывоопасность, резкий неприятный запах. Любая авария с аммиаком ведет к серьезным последствиям.

В торговле в основном используют компрессионные холодильные машины, которые состоят из следующих основных узлов: компрессора, конденсатора воздушного охлаждения, терморегулирующего вентиля (ТРВ) и испарителя. Холодильная машина, кроме перечисленных основных частей, имеет приборы автоматики, фильтры, осушители, теплообменники и т.п.

Компрессор - наиболее сложный и важный узел холодильной машины. Он служит для отсасывания паров хладагента из испарителя, сжатия и нагнетания в конденсатор. Основным показателем работы компрессора является его холодопроизводительность (количество теплоты, которое холодильная машина получает за единицу времени от охлаждаемой среды).

Конденсатор воздушного охлаждения - теплообменный аппарат, в котором поступающий из компрессора парообразный хладагент превращается в жидкость. Этот процесс протекает при отдаче хладагентом теплоты во внешнюю среду.

Испаритель - теплообменный аппарат, осуществляющий отбор тепла от охлаждаемой среды.

Терморегулирующий вентиль служит для автоматической подачи необходимого количества хладагента в испаритель. Он контролирует и поддерживает заданную температуру паров хладона на выходе из испарителя.

Приборы автоматики обеспечивают пуск, остановку холодильной машины, защиту ее от перегрузок, поддержание заданного температурного режима в охлаждаемой среде, оптимальное заполнение испарителя хладагентов, своевременное оттаивание снеговой шубы с испарителей.

Реле давления автоматически поддерживает заданное давление на линии всасывания путем включения и выключения компрессора.

Ресивер - резервуар, который собирает жидкий хладагент в целях обеспечения его равномерного поступления к ТРВ и в испаритель. Фильтр служит для удаления механических загрязнений. Осушитель предназначен для поглощения влаги из хладагента при заполнении им системы и во время эксплуатации машины. Теплообменник служит для перегрева паров хладагента, идущих от испарителя к компрессору, и переохлаждения хладагента, идущего от конденсатора к ТРВ.

Принцип действия холодильной машины заключается в следующем.

1. В испарителе, установленном в охлаждающем объеме, происходит кипение жидкого хладагента при низком давлении и температуре за счет отбора тепла из окружающей среды.

2. Из испарителя пары хладона проходят через теплообменник и паровой фильтр, затем они отсасываются компрессором, сжимаются и в перегретом состоянии нагнетаются в конденсатор, при этом температура и давление повышаются.

3. В охлаждаемом воздухом конденсаторе они конденсируются, т.е. превращаются в жидкость.

4. Жидкий хладон стекает по трубам конденсатора и скапливается в ресивере, откуда под давлением проходит через жидкостный фильтр и теплообменник.

5. Очищенный хладон, проходя через узкое отверстие ТРВ, дросселируется, распыляется и при резком снижении температуры и давления поступает в испаритель.

Цикл повторяется. Циркулируя по такому замкнутому кругу, хладагент попеременно меняет свое агрегатное состояние, т. е. происходит скачкообразный переход хладагента из жидкого состояния в газообразное и наоборот.

В настоящее время в торговом холодильном оборудовании используются различные системы холодоснабжения: встроенные, выносные и централизованные.

Теплопритоки в торговые залы магазинов от встроенных в оборудование холодильных агрегатов приводят к снижению товарооборота и росту непредусмотренных расходов, в том числе:

создаются некомфортные для покупателей условия (высокая температура воздуха в торговом зале и высокий уровень шума, неприятные посторонние запахи);

некомфортные для продавцов и обслуживающего персонала условия приводят к снижению качества обслуживания, падает имидж предприятия и уменьшается товарооборот;

срок службы встроенных холодильных агрегатов в 2...3 раза ниже, чем при использовании систем выносного холодоснабжения, и в 4...6 раз ниже, чем при использовании централей;

происходят частые выходы из строя оборудования;

возникают дополнительные расходы на кондиционирование и на энергопотребление.

Выносное холодоснабжение представляет собой систему холодоснабжения на базе автономных компрессорно-конденсаторных агрегатов, расположенных в машинном отделении и изолированных от торговых помещений. При этом каждый агрегат может обеспечивать холодом нескольких потребителей.

Одним из важнейших условий эффективного развития предприятий торговли является использование централизованных систем холодоснабжения, представляющих собой несколько параллельно включенных компрессоров на единой раме с дополнительным оборудованием. Каждый центральный агрегат оборудован микропроцессорным блоком управления, осуществляющим регулирование холодопроизводительности агрегата и обеспечивающим равномерную работу каждого компрессора и конденсатора.

Основные достоинства использования централизованной системы холодоснабжения следующие:

центральные агрегаты компактны и занимают значительно меньше места;

достигается заметная экономия электроэнергии, так как крупные компрессоры имеют более высокий коэффициент полезного действия;

для крупных супермаркетов централизованная система холодоснабжения экономически выгоднее традиционного варианта холодоснабжения; увеличивается товарооборот;

обеспечивается высокая надежность за счет использования нескольких компрессоров;

в случае выхода из строя одного или несколько компрессоров остальные компрессоры обеспечат поддержание требуемой температуры для предотвращения потери продукции до устранения неисправности;

Промышленное холодильное оборудование получило весьма широкое распространение в самых различных сферах производства. Основной областью применения агрегатов и установок, принадлежащих к данному классу, является поддержание определенных температурных режимов, необходимых для длительного хранения самых различных товаров, материалов и веществ. Они используются для охлаждения жидкостей, а также продовольственных товаров, химического сырья, технологических смесей и т.д.

Основные характеристики промышленного холодильного оборудования

Применяемые в промышленности, способно создавать рабочие температуры от -150 до +10С. Агрегаты, относящиеся к данному классу, адаптированы для работы в достаточно жестких условиях и обладают высокой степенью надежности комплектующих.

Промышленные холодильные машины работают по принципу теплового насоса, перенося энергию от теплоотдатчика к теплоприемнику. В роли первого в подавляющем большинстве случаев выступает окружающая среда, а принимающим объектом является хладагент. Последние принадлежит к классу веществ, которые способны закипать при давлении 1 атм, и температуре, значительно отличающейся от показателя внешней среды.

Промышленное холодильное оборудование состоит из 8 основных компонентов:

  • компрессор;
  • испаритель;
  • регулятор потока;
  • вентилятор;
  • соленоидный клапан;
  • реверсивный клапан;

Конденсатор осуществляет всасывание паров вещества, выступающего в роли хладагента, где осуществляется повышение его давления и температуры. После этого хладагент поступает в компрессорный блок, наиболее важными параметрами которого являются сжатие и рабочий объем. Конденсатор охлаждает нагретые пары хладагента, за счет чего и происходит передача тепловой энергии в окружающую среду. Испаритель является компонентом, через который проходит охлаждаемая среда и парообразный хладагент.

Промышленные холодильные машины и установки применяются для охлаждения достаточно больших объемов, которые используются складами, овощебазами, линями заморозки, морозильными туннелями, а также больших и сложных систем кондиционирования. В частности такое холодильное оборудование наиболее часто используется для промышленных нужд в цехах переработки пищевой продукции (мяса, птицы, рыбы, молока и т.д.)

Классификация промышленных установок

Все промышленные холодильные установки разделяется на компрессионные и абсорбционные. В первом случае холодильное оборудование представляет собой пароконденсационную машину, которая осуществляет сжатие хладагента посредством компрессорных или турбокомпрессорных блоков. Такие системы используют фреон, либо аммиак, как наиболее эффективные с позиции температуропоглощения вещества.

Абсорбционные установки конденсируют парообразный хладагент при помощи твердого или жидкого вещества-абсорбента, из которого осуществляется испарение рабочего вещества при нагреве за счет более высокого парциального давления. Данные агрегаты бывают непрерывно и периодические действующие, при чем первый тип агрегатов разделяется на насосные и диффузионные.

Холодильное оборудование компрессорного типа различается по типу исполнения компрессора на открытые, полугерметичные и герметичные агрегаты. В зависимости от способа охлаждения конденсаторного блока машины оснащаются системами водяного или воздушного охлаждения. Абсорбционные агрегаты используют в процессе работы большее количество воды и обладают значительными габаритами и весом. Они обладают рядом достоинств по сравнению с компрессорными холодильными установками, в частности, простотой конструкции, более высокой надежностью компонентов, а также возможностью использовать недорогие источники тепла и бесшумностью в работе.

В зависимости от мощности промышленного холодильного оборудования рассчитывается величина возможных выбросов тепловой энергии. Это тепло может быть использовано в 3 направлениях:
- в окружающую среду. Передача тепла осуществляется посредством выносного компрессора.
- в производственное помещение. В данном случае выделяемая тепловая энергия позволяет экономить финансовые средства, необходимые на отопление.
- рекуперация энергии. Выделенное тепло переводится в место, где в нем есть наибольшая потребность.

Основные виды промышленного холодильного оборудования

При выборе промышленного холодильного оборудования необходимо ориентироваться на основные технические параметры предложенных моделей. Следует обратить особое внимание на максимальную величину тепловыделения, а также его динамику на протяжении производственной смены. Кроме того, важно учитывать показатель гидравлического сопротивления узлов и компонентов системы. Необходимо определиться с направлением отвода тепла, а также принять решение о возможности дублирования всей холодильной системы.

На сегодняшний день наиболее часто в промышленности используется холодильное оборудование следующих видов:

  • . Данный вид агрегатов применяется в мясном, колбасном, рыбном и хлебобулочном производстве.
  • шкафы и камеры шоковой заморозки. Оборудование этого типа применяется на предприятиях, занимающихся производством рыбной, мысной и овощной продукции, а также переработкой и хранением фруктов, ягод и т.д.
  • пищевые чиллеры. Данный вид холодильных машин отлично подходит для охлаждения различных жидкостей и отдельных категорий пищевых продуктов;
  • чиллеры для охлаждения пластмасс. Такие агрегаты применяются для охлаждения сырьевых полимеров и готовых изделий.
  • отделители жидкости и ресиверы и коллекторы;
  • морозильные туннели. Данный вид оборудования применяется для заморозки штучных, расфасованных и упакованных товаров в больших количествах.

Сведения об основных принципах устройства холодильного оборудования помогут Вам использовать его возможности наиболее полно, при этом сохранив его работоспособность на долгое время.

Устройство наибольшего количества холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются - , и регулятор потока (терморегулирующий вентиль или капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.

Охлаждение в холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре. Парообразный хладагент всасывается компрессором, и подается в конденсатор, давление хладагента повышается до 15-20 атм., а его температура повышается до 70-90?С.

Проходя через конденсатор, горячий парообразный хладагент охлаждается и конденсируется, т. е. переходит в жидкую фазу. Конденсатор может быть либо воздушным, либо с водяным охлаждением - в зависимости от типа холодильной системы.

На выходе из конденсатора хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7?С. При этом температура конденсации примерно на 10-20?С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается - часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости. Жидкость кипит в испарителе, забирая тепло у окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость в нем полностью улетучилась. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения - происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента, и в компрессор не попадает жидкость.

Следует отметить, что в случае попадания жидкого хладагента в компрессор - так называемого гидравлического удара - возможны повреждения и поломки клапанов и других деталей компрессора. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8?С. Перегретый пар выходит из испарителя, и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот. Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Опишем устройство отдельных агрегатов, узлов и деталей холодильного оборудования:

АГРЕГАТ

Холодильный агрегат состоит из следующих основных деталей и узлов: компрессора, ресивера, конденсатора, испарителя, терморегулирующего вентиля (ТРВ), .

Холодильные агрегаты выпускаются на базе герметичных, экранированных, полугерметичных и сальниковых компрессоров. По своему конструктивному исполнению компрессоры, используемые в холодильных агрегатах, делятся на две основные категории: поршневые и ротационные, спиральные, винтовые.

Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения пластин, спиралей и винтов.

В герметичных компрессорах электродвигатель и компрессор расположены в едином герметичном корпусе. Такие компрессоры широко используются в холодильных машинах малой и средней мощностей и в бытовых кондиционерах. Преимуществом герметичных агрегатов является их относительно невысокая стоимость и меньший уровень шума. Недостатком является невозможность ремонта компрессора даже при незначительных повреждениях, например, при выходе из строя клапана.

В экранированных компрессорах статор электродвигателя вынесен из фреономасляной среды. Агрегаты данного типа менее чувствительны к наличию влаги в холодильном контуре и, что немаловажно, позволяют все работы по монтажу и замене статора электродвигателя компрессора при его сгорании производить на месте эксплуатации, не нарушая герметичности всей системы.

В полугерметичных компрессорах электродвигатель и компрессор расположены в едином разборном корпусе. Эти компрессоры производятся различной мощности, что позволяет использовать их в агрегатах средней и большой мощности. Преимуществом является возможность ремонта и надежность в работе, недостатком - высокая по сравнению с герметичными компрессорами цена, повышенная шумность и необходимость технического обслуживания.

В сальниковых компрессорах электродвигатель расположен снаружи. Вал компрессора через сальники выведен за пределы корпуса и приводятся в движение электродвигателем с помощью ременной передачи. Такая конструкция способствует повышенной утечке хладагента через сальниковые уплотнения и требует регулярного технического обслуживания.

В настоящее время агрегаты на базе сальниковых компрессоров для торгового оборудования практически не выпускаются. Преимуществ в конструкциях с сальниковыми компрессорами на данный момент нет, ремонт подобных холодильных машин отличается невысокой надежностью.

Конденсатор представляет собой теплообменный аппарат, который передает тепловую энергию хладагента окружающей среде. В холодильных агрегатах для торгового оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсаторами водяного охлаждения, они экономичнее в работе и проще в эксплуатации.

Конденсатор может быть смонтирован на раме агрегата или быть установленным отдельно от него. Преимущество выносного конденсатора заключается в том, что он менее требователен к температуре воздуха в машинном отделении и практически не требует дополнительной вентиляции в машинном отделении.

Как правило, воздушный конденсатор для холодильных или морозильных камер устанавливается на открытом воздухе. Но, несмотря на преимущество выносного конденсатора, при работе холодильной установки в зимний период есть определенные проблемы:

  • возможность повреждения компрессора при пуске;
  • опасность попадания жидкого хладагента в компрессор;
  • обмерзание теплообменника при длительной работе;
  • уменьшение холодопроизводительности.

Для устранения этих причин используется дополнительный комплект автоматики: реле давления или регулятор скорости вращения электродвигателя, дифференциальный клапан, обратный клапан и регулятор давления конденсации.

Ресивер

Ресивер – резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.

Испаритель- это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемых объектов (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящего хладагента. Температуру кипения, как правило, поддерживают на 10-15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе) или находиться за его пределами.

В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарители для охлаждения промежуточного хладоносителя (вода, рассол, воздух, и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента. Как правило, это пластинчатые теплообменники с медными или алюминиевыми трубками и ребрами из алюминия, меди или оцинкованной стали.

Терморегулирующий вентиль

Терморегулирующий вентиль (ТРВ)устанавливается в магистраль нагнетания перед испарителем и обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Избыток хладагента в испарителе может привести попаданию в компрессор жидкой фазы хладагента, что приведёт к поломке компрессора. Недостаток хладагента в испарителе резко снижает эффективность работы испарителя.

Осушительные патроны предназначены для очистки циркулирующего по системе холодильного агрегата хладагента от механических частиц и влаги. Часто осушительные патроны используют для понижения кислотности среды внутри системы холодильного агрегата. Осушительные патроны могут устанавливаться как на магистрали нагнетания, так и на стороне всасывания.

ВОЗДУХООХЛАДИТЕЛЬ

Воздухоохладитель - аппарат для охлаждения воздуха внутри охлаждаемого объема. Состоит из испарителя и вентилятора (вентиляторов). прогоняет охлаждаемый воздух через испаритель и направляет на охлаждаемые продукты.

МОНОБЛОК

Машина холодильная моноблочная (моноблок) предназначена для создания искусственного холода в торговом холодильном оборудовании. Особенностью моноблока является то, что он не требует монтажа отдельных узлов на месте эксплуатации, а просто монтируется на холодильной камере. В отличие от сплит-систем, моноблок обладает меньшей стоимостью при одинаковых параметрах.

Это устройство для отключения и включения компрессора, с целью поддержания определенной температуры в охлаждаемом объеме. Электронные термостаты основаны на принципе термопары, где электронное устройство - в зависимости от сопротивления температурного датчика - управляет временем работы компрессора.

Электромеханические термостаты работают на принципе расширения сильфонной гармошки, заполненной хладагентом. При охлаждении давление внутри сильфона понижается, сильфонная гармошка сжимается и контакты, через которые питается компрессор, размыкаются. При нагревании все происходит в обратной последовательности.

ХЛАДАГЕНТЫ

Хладагенты - это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур.

Хладон-12 (R -12) имеет химическую формулу CHF 2 C1 2 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами

Хладон-22 (R -22) , или дифтормонохлорметан (CHF 2 C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность Хладона-22 примерно в 1,6 раза больше, чем Хладона-12.