Лазерная указка. Все о лазерах

Лазерная безопасность знаний

1. Что такое лазер?
Лазерное устройство, которое излучает свет (электромагнитное излучение) в процессе оптического усиления на основе вынужденного излучения фотонов. Термин "лазер" возник как аббревиатура усиление света вынужденным излучением. Испускается лазерное излучение отличается высокой степенью пространственной и временной когерентности, недостижимой с помощью других технологий.

2. Лазерная указка Структурная схема


3. Что такое лазерная приложения?
Лазеры получили широкое применение в повседневной жизни. Лазеры является наиболее применимым в презентации для указывая объекты, согласования на строительство и проект, медицинское лечение для косметических и хирургических процедур. Нижняя указатель мощности лазера идеально подходит для презентаций и астрономии звездопада. Более высокая мощность лазерного указателя до 100 mW было бы прекрасно для сжигания эксперимент. Высокой мощности класса IV лазер используется для эксперимента, научные исследования, военные и т.д. таргетинг

4. Что такое длина волны?
Наши глаза чувствительны к свету, который находится в очень маленькой области электромагнитного спектра с надписью "видимый свет". Этот видимый свет соответствует диапазон длин волн 400 - 700 нанометров (nm) и цветовую гаnmу фиолетового до красного. Человеческий глаз не способен "видеть" излучение с длинами волн за пределами видимого спектра. Видимого цвета из кратчайших в длину волны длинной являются: фиолетовый, синий, зеленый, желтый, оранжевый и красный. Ультрафиолетовое излучение имеет более короткую длину волны, чем видимый свет фиолетовый. Инфракрасное излучение имеет длину волны, чем видимый красный свет. Белый свет представляет собой смесь из цветов видимого спектра. Черный является полное отсутствие света.

Спектральные цвета и длины волны

Этот график показывает цвета видимого спектра света и связанных с длинами волн в нанометрах. Диапазоны традиционно дается как:
ультрафиолетовом свете, 100 nm, 400 nm;
видимый свет, 400 nm-750nm;
инфракрасный свет, 750 nm-1 nm.

5. Что такое лазерная поперечной моде?


Поперечная электромагнитная режиме (TEM) структура лазерного луча описывает распределение мощности по сечению пучка. Большинство приложений лазерной потребует фундаментальных режима луча (TEM00) с гауссовым распределением мощности по сечению пучка, как показано на рисунке справа. Это фундаментальные результаты в режиме наименьшего диаметра пучка и расходимость пучка и может быть сосредоточено до наименьшего возможного размера пятна.
Прочие доходы приложений с повышенной мощностью доступны в первом режиме порядке (TEM01 *), или даже мод высшего порядка. Мощность лазера имеющих режим структуры над фундаментальным обычно называют multitra nsverse режиме (MTM). Режим структуры производства лазерных может быть изменен, просто изменив зеркала.

6. Различные классификации лазеров

Класс I

По своей сути безопасны, нет возможности повреждения глаз. Это может быть либо из-за низкой выходной мощности (в случае повреждения глаз невозможно даже после нескольких часов воздействия), или из-за шкафа предотвращения доступа пользователей к лазерным лучом при нормальной эксплуатации, такие как проигрыватели компакт-дисков или лазерных принтеров.

Класс II

Рефлекс моргания человеческого глаза (отвращение ответ) позволит предотвратить повреждение глаз, если человек намеренно смотрит в пучке в течение длительного периода. Выходная мощность может быть до 1 mW. Этот класс включает в себя только лазеры, которые излучают видимый свет. Большинство лазерных указателей и коnmерческие сканеры лазерные в этой категории.

Класс IIIa

Лазеры этого класса в основном опасные в сочетании с оптическими инструментами, которые изменяют диаметр луча или плотности мощности, хотя даже без оптического инструмента повышения прямого контакта с глазом в течение двух минут может привести к серьезному повреждению сетчатки. Выходная мощность не превышает 5 mW. Плотность мощности излучения не превышает 2,5 mW / кв.см, если устройство не маркирован с "осторожностью" предупредительный знак, в противном случае "опасности" предупредительной этикетке не требуется. Многие достопримечательности лазерные для огнестрельного оружия и лазерных указателей в этой категории.

Класс IIIb

Лазеры в этом классе может привести к повреждению, если луч попадает в глаз напрямую. Как правило, это относится к лазерам питается от 5-500 mW. Лазеры в этой категории может привести к необратимому повреждению глаз с экспозиции 1/100-й секунду или меньше в зависимости от силы лазера. Диффузного отражения, как правило, не опасны, но зеркальных отражений может быть таким же опасным, как прямые воздействия. Защитные очки рекомендуется при прямом просмотре луч лазера класса IIIb может произойти. Лазеры на высоком конце мощность этого класса могут также представлять опасность возникновения пожара и может слегка обжечь кожу.

Класс IV

Лазеры в этом классе имеют выходную мощность более 500 mW в пучке и может вызвать тяжелые, необратимые повреждения глаз или кожи без увеличены оптики глаза или приборов. Диффузного отражения лазерного луча могут быть опасными для кожи или глаз в течение Номинальный зону опасности. Многие промышленные, научные, военные и медицинские лазеры в этой категории.

7. Что такое лазерная безопасность знаний?
Даже первый лазер был признан как потенциально опасные. Теодор Мейман характеризуется первый лазер как имеющий власть одного "Gillette", как это могло гореть через одну лезвие бритвы Gillette. Сегодня принято считать, что даже маломощные лазеры с помощью всего нескольких милливатт мощности могут быть опасными для человека зрение, когда луч такого лазера попадает на глаза непосредственно или после отражения от блестящей поверхности. На длинах волн, роговица и хрусталик может сосредоточиться хорошо, согласованности и малой расходимостью лазерного света означает, что она может быть направлена на глаз в очень маленькое пятно на сетчатке глаза, что приводит к локализованным жжения и повреждению в течение секунд или даже меньше времени. Лазеры обычно обозначен ряд класса безопасности, которая определяет, насколько опасны лазера:

. Класс I/1 по своей сути безопасны, как правило, потому что свет, содержащийся в корпусе, например, проигрыватели компакт-дисков.
. Класс II/2 является безопасной при нормальной эксплуатации; рефлекс моргания из глаз позволит предотвратить повреждение. Обычно до 1 mW, для указателей например лазера.
. Класс IIIa/3A лазеры, как правило, до 5 mW и привлекать небольшой риск повреждения глаз за время рефлекс моргания. Вглядываясь в таком пучке в течение нескольких секунд может привести к повреждению пятна на сетчатке.
. Класс IIIb/3B может привести к немедленному повреждению глаз при воздействии.
. Класс IV/4 лазеры могут обжечь кожу, а в некоторых случаях даже рассеянного света может вызвать раздражение глаз и / или повреждения кожи. Многие промышленные и научные лазеров в этом классе. Указанные полномочия для видимого света, непрерывно лазеров. Для импульсных лазеров и невидимых волн, другие ограничения мощности применяются.

Люди, работающие с классом 3В и 4 класса лазеров могут защитить свои глаза защитные очки, которые предназначены для поглощают свет определенной длины волны.

Некоторые инфракрасный лазеры с длиной волны за пределами около 1,4 микрометров часто упоминается как "безопасный для глаз». Это потому, что внутренняя молекулярных колебаний молекул воды очень сильно поглощают свет в этой части спектра, и, таким образом лазерный луч на этих длинах волн ослабляется настолько, как она проходит через роговицу глаза, что нет света остаются должно быть сосредоточено на объективе на сетчатку. Ярлык "безопасный для глаз" может ввести в заблуждение, однако, как это относится только к относительно малой мощности непрерывных пучков волн, любой большой мощности или модуляцией добротности лазера на этих длинах волн может сжечь роговицу, вызывая серьезные повреждения глаз.

8. Опасности лазерного излучения
Лазерные указки получили широкое применение от его первого появления. Лазеры в основном применимы в качестве инструмента для представления в преподавание, астрономии звездопада, и встреч. Тем не менее, эти лазеры постепенно принадлежащих лазерных поклонников и энтузиастов в том числе детей в связи с низкой стоимостью и бесчисленное множество поставщиков, и использоваться таким образом, не предусмотренных производителями. В результате, это серьезно Важно понимать опасности лазерных указок перед реальной обладание лазерной указкой.

Лазерная опасности
Лазерное излучение преимущественно вызывает повреждение путем термического воздействия. Даже умеренно питания лазера может привести к травмам глаз. Лазеров высокой мощности также может обжечь кожу. Некоторые лазеры настолько мощным, что даже диффузного отражения от поверхности может быть опасным для глаз.

Хотя существует потенциальная опасность для сетчатки, не все лазеры видимого пучка, вероятно, привести к необратимому повреждению сетчатки. Воздействия смотреть на луч лазерной указки, скорее всего, причиной остаточного изображения, флэш-слепоты и бликов. Временная боль в сетчатке восстановится через несколько минут.

Малым углом расходимости лазерного света и механизма фокусировки на глаза означают, что лазерный свет может быть сконцентрирован в очень маленькое пятно на сетчатке. Если лазер достаточно мощный, постоянный ущерб может происходить в течение доли секунды, буквально быстрее, чем мгновение ока. Достаточно мощный в видимой до ближней ИК лазерным излучением (400-1400nm) будет проникать глазного яблока и может привести к нагреву сетчатки, в то время как воздействие лазерного излучения с длиной волны менее 400 nm и больше, чем 1400nm в основном поглощаются роговицей и хрусталиком, приводит к развитию катаракты или ожогов.

Инфракрасные лазеры являются особенно опасными, так как защитные тела "рефлекс моргания" ответ срабатывает только видимый свет. Например, некоторые люди подвергаются воздействию высоких Nd мощность: YAG лазера с невидимым 1064 излучению, не может чувствовать боль или заметите непосредственного ущерба их зрение. Поп-музыка или звук щелчка, вытекающих из глазного яблока может быть единственным признаком того, что повреждение сетчатки произошло то есть сетчатка нагревали до 100 ° C в результате локализованного взрывного вскипания сопровождается немедленного создания постоянного слепое пятно.

Ответственные владельцы лазерных должны полностью понимать опасности лазерного излучения, и признать FAA правила, связанные с использованием лазерной указки. Защитные очки, как правило, требуется, когда непосредственное наблюдение мощный луч может произойти.

9. Как защитить себя от лазерной опасности?
Это весьма важно для принятия эффективных методов предотвращения ущерба от класса 3В или класса IIIb. Лазерные защитные очки являются главным аксессуаром для защиты глаз на рынке в настоящее время. Различные выбор лазерных датчиков, очки должны быть выбраны для конкретного типа, чтобы заблокировать соответствующую длину волны. Например, поглощающий 532 очков обычно имеет оранжевый очков.

Непосредственно глядя на лазерные указки строго запрещено в любых условиях. Не забывайте надевать защитные очки перед использованием лазерной указки.

Советы по безопасности лазерной указкой:

● Поставьте лазер в недоступном для несовершеннолетних. Не допускать несовершеннолетних (до 18 лет) на приобретение и использование лазерной указкой ни при каких надзора. Только взрослые могут использовать лазерные указки после того, как они поняли знаний безопасности и риска лазерных продуктов.

● Будьте особенно осторожны, если вы используете высокой мощности лазерного излучения. Вы никогда не должны пытаться указать свой лазерный указатель на любого человека и животных, пилот самолета и движущихся транспортных средств, или вы будете заключены в тюрьму в тюрьме за неправильное использование лазерных устройств.

● Хранить вдали от мощных лазеров. Пожалуйста, всегда держать себя вдали от мощных лазера, такие как сжигание лазера. Они существенно отличаются от формальных лазеров для презентации. Никогда не пытайтесь купить лазер без никакой выявить класса и мощности.

10. Как мощные лазерные указки будет?

Различные приложения должны лазеров с различной выходной мощностью. Лазеры, которые производят непрерывный пучок или серия коротких импульсов можно сравнить на основе их средней мощности. Лазеры, которые производят импульсы могут быть охарактеризованы на основе пиковая мощность каждого импульса. Пиковая мощность импульсного лазера на много порядков больше, чем его средняя мощность. Средняя выходная мощность всегда меньше, чем потребляемая мощность.

Непрерывным или средней мощности, необходимой для некоторых применений:
Мощность использование
1-5 mW лазерного указателя
5 mW компакт-дисков
5-10 mW DVD-плеер или DVD-дисков
100 mW высокоскоростной CD-RW горелки
250 mW потребительских 16x DVD-R горелки
400 mW горения через футляре диска в том числе в течение 4 секунд
1 W Зеленый лазер в текущем Голографический Универсальный развития прототип диска
1-20 W Выходная большинства коnmерчески доступных твердотельных лазеров, используемых для микро-обработки
30-100 W Типичные запечатанных СО2 хирургических лазеров
100-3000 W Типичные запечатанных CO2 лазеров, используемых в промышленных лазерной резки
5 KW Выходная мощность достигается за счет 1 см бар лазерный диод
100 KW Заявленная мощность СО2-лазера, разрабатываемый Northrop Grumman для военных (оружие) приложений

11. Что лазерных обслуживания?

Правильное обслуживание вашего лазерного прекрасно продлить срок его службы. Нам просто нужно следовать следующим советам:

Что нужно:
1. Салфетка из микрофибры
Пожалуйста, убедитесь, что ткань из микроволокна специально разработана для очистки линз. Вы можете найти это в вашем местном камеры или очки магазине.
2. Q-наконечником или зуб выбор
Вам нужно будет сложить ткань над одним из них, чтобы быть в состоянии достичь линзы правильно.
3. Объектив очистки растворов (необязательно)
Используйте для очистки линз решение, только если объектив не очищается салфетка из микрофибры в одиночку. Пожалуйста, убедитесь, что чистящий раствор разработан специально для очистки объектива.
* Внимание: не используйте воду.

Процедура:
1. Мойте руки с мылом и водой. Убедитесь в том, чтобы высушить их должным образом.
2. Сложите ткань из микроволокна на зубочистку или ручку часть Q-Tip. Убедитесь, что вы не трогайте часть ткани, которая будет очистка линз. Вы, наверное, не сможет сложить ткань вдвое, так что вы должны быть очень осторожны, чтобы не нажимать слишком сильно на объектив.
3. Аккуратно переместите ткань в отверстие, пока она вступает в контакт с объективом. Натрите его из стороны в сторону, но не нажимайте слишком сильно. Плавно поворачивайте ткань в вращательным движением вперед и назад. Повторите эту процедуру, пока объектив вашей лазерной чист.
4. Превратите ваш лазерный блок, чтобы увидеть, если объектив чист.

Тем не менее грязным? Попробуйте использовать раствор для очистки объектива.
Применяют по 1 капле только часть ткани, которая будет очистка линз, следовать той же процедуре, что и выше. Вы хотите, чтобы закончить с помощью сухой части ткань для протирки объектива сухой, это должно занять один проход стороны в сторону или нежно вращаться.

  • Безопасность
  • Примечания
  • Литература
  • Ссылки
  • Типы лазерных указок

    Ранние модели лазерных указок использовали гелий-неоновые (HeNe) газовые лазеры и излучали в диапазоне 633 нм. Они имели мощность не более 1 мВт и были очень громоздкими и дорогими. Сейчас лазерные указки, как правило, используют менее дорогие красные диоды с длиной волны 650-670 нм. Указки чуть подороже используют оранжево-красные диоды с λ=635 нм, которые делают их более яркими для глаз, так как человеческий глаз видит свет с λ=635 нм лучше, чем свет с λ=670 нм. Производятся и лазерные указки других цветов; например, зелёная указка с λ=532 нм - хорошая альтернатива красной с λ=635 нм, поскольку человеческий глаз приблизительно в несколько раз чувствительнее к зелёному свету по сравнению с красным. В последнее время появились в продаже жёлто-оранжевые указки с λ=593,5 нм и синие лазерные указки с λ=473 нм.

    Красные лазерные указки

    Самый распространённый тип лазерных указок. В этих указках используется лазерные диоды с коллиматором. Мощность варьируется приблизительно от одного милливатта до ватта. Маломощные указки в форм-факторе брелока питаются от маленьких батареек-«таблеток» и на апрель 2012 года стоят порядка 1-5 долларов США. Мощные красные указки (длина волны 650-660 нм) мощностью от нескольких сотен милливатт до ватта, способные зажигать хорошо поглощающие излучение материалы, стоят порядка 50-500$.

    Более редкие красные лазерные указки используют твердотельный лазер с диодной накачкой ( англ. Diode-pumped solid-state laser , DPSS) и работают на длине волны 671 нм. Отличаются от указок на лазерном диоде круглым сечением луча (у обычной лазерной указки луч уплощён вследствие астигматизма резонатора лазерного диода).

    Зелёные лазерные указки (510-530нм)

    Сначала мощным (обычно 200-1000мВт ) инфракрасным лазерным диодом с λ=808 нм накачивается кристалл ортованадата иттрия, легированный неодимом (Nd:YVO 4), где излучение преобразуется в 1064 нм. Потом, проходя через кристалл титанила-фосфата калия (KTiOPO 4 , сокращённо KTP), частота излучения удваивается (1064 нм → 532нм) и получается видимый зелёный свет. Генерация и вывод зелёного излучения обеспечиваются зеркалами, одно из которых полностью отражает излучение с длиной волны 1064 и 532 нм и полностью пропускает излучение накачки 808 нм, а другое полностью отражает излучение 1064 нм, но полностью пропускает 532 нм. Частично отражается и излучение накачки.

    В большинстве современных зелёных лазерных указок кристаллы ванадата иттрия и KTP вместе с зеркалами резонатора объединены в так называемый «микрочип» - склейку из двух кристаллов с напылёнными на грани зеркалами. Для генерации лазерного излучения достаточно сфокусировать внутри кристалла Nd:YVO 4 излучение лазерного диода накачки.

    КПД схемы сильно зависит от мощности накачки и может достигать не более 20 %. Кроме зелёного света такой лазер излучает значительную мощность в ИК на длинах волн 808 и 1064 нм, поэтому в таких указках обязательно нужно устанавливать инфракрасный фильтр (IR-фильтр ), чтобы убрать остатки ИК-излучения и избежать повреждения зрения. В недорогих вариантах зелёных указок такой фильтр могут не устанавливать, в таком случае даже указка с мощностью 1-5 мВт представляет серьёзную опасность для зрения, так как мощность ИК-излучения может достигать десятков милливатт. Излучение 1064 нм сфокусировано почти так же хорошо, как и зелёное и представляет опасность при попадании в глаз даже на большой дистанции, тогда как излучение накачки 808 нм сильно расфокусировано и не сконцентрировано вдоль луча, представляя опасность на расстоянии до нескольких метров.

    Стоит отметить высокое энергопотребление зелёных лазеров - потребляемый ток достигает сотен миллиампер. Так как эффективность генерации и удвоения с ростом мощности накачки быстро возрастает, увеличение выходной мощности с 5 до 100 мВт требует повышения потребляемого тока лишь примерно в два раза.

    Малые размеры зелёной лазерной указки не позволяют установить в них систему стабилизации температуры лазерного диода и активных сред. Особенно сильное влияние температура оказывает на длину волны, излучаемую лазерным диодом, что приводит к уходу её с максимума линии поглощения неодима и падению выходной мощности. Это приводит к тому, что такие указки нестабильно работают при изменении температуры. Частично этот недостаток устраняется путём стабилизации мощности излучения на выходе лазера. Для этого на выходе устанавливают светоделитель (роль которого исполняет ИК-фильтр, от которого отражается часть излучения) и фотодиод, и вводят отрицательную обратную связь. Недостатком такого решения является возможность выхода из строя лазерного диода при значительном отклонении температуры, при котором система стабилизации, компенсируя падение выходной мощности, вынуждена значительно поднять ток через него.

    Голубые лазерные указки (473 нм)

    Данные лазерные указки появились в 2006 году и имеют схожий с зелёными лазерными указками принцип работы. 473 нм свет обычно получают путём удвоения частоты 946 нм лазерного излучения. Для получения 946 нм используется кристалл алюмо-иттриевого граната с добавками неодима ( Nd:YAG).

    Синие лазерные указки (445 нм)

    В этих лазерных указках свет излучается мощным синим лазерным диодом в 1-5 Вт. Большинство подобных указок относится к 4-му классу лазерной опасности и представляет очень серьёзную опасность для глаз и кожи как непосредственно, так и в виде рассеянного поверхностью излучения.

    Активное распространение синие указки получили в связи с серийным выпуском мощных лазерных диодов, в основном для компактных LED-проекторов, например Casio Slim .

    Фиолетовые лазерные указки (405нм)

    Свет в фиолетовых указках генерируется лазерным диодом, излучающим луч с длиной волны 405 нм. Эти лазеры используются в проигрывателях для записи Blu-ray Disc . Длина волны 405 нм находится на границе диапазона, воспринимаемого

    Миф 3. "Энергетика" лазерного оружия ничтожна о сравнению с огнестрельным. "Для сравнения: мощность 76-мм дивизионной пушки Ф-22 образца 1936 года- порядка 150 мегаватт. В 150 раз больше (чем у ABL)!.. Это еще мы не учитываем энергию ВВ в самом снаряде. Там еще столько же. Вдумайтесь в этот простейший факт: маленькая древняя пушка времен ВОВ по цене металлолома в сотни раз мощнее ультрасовременного "боевого" лазера весом десятки тонн и стоимостью свыше $5 млрд. Один только выстрел из ABL стоит миллионы долларов. И этот выстрел по энергетике сравним с очередью крупнокалиберного пулемета".

    Сравнение мощности, развиваемой в течение 0,01 сек, с мощностью постоянного излучения, и с помощью этого сравнения - "доказывание" неполноценности более "долгоиграющего" оружия противоречит даже курсу школьной физики. Попробуем провести сравнение корректным способом - подсчитав энергию, отправляющуюся к цели.


    Вот как? А подсчет количества энергии без учета того, за какое время эта энергия передается цели, значит, не противоречит школьному курсу физики? Интересно, где Пожидаев физику учил.
    Я вроде уж куда проще разъяснил, почему лучше сравнивать именно через мощность, то есть энергию деленную на время. Придется еще раз.

    Через энергию конечно тоже можно посчитать, но если делать это действительно корректным способом, то это будет на порядок сложнее, требует учета разных факторов и оговорок - ведь тогда нужно считать эффективную энергию луча , ту ее часть которая непосредственно потратится на разрушение цели.

    Нельзя тупо брать всю энергию лазера оптом, что отправили в направлении цели, это сугубо некорректно.
    Ведь луч лазера принципиально отличается от кинетического оружия тем, что, будучи маломощным средством поражения, может значительно отражаться от нее и ему требуется на порядки больше времени воздействовать на цель, чем снаряду. По сути, лазер десятки секунд греет некое пятно на цели. При этом тепло (энергия) из этого пятна:
    безвредно тратится на нагрев окружающего воздуха,
    безвредно уходит в окружающую среду в виде инфракрасного излучения,
    безвредно распространяется за счет теплопроводности по телу мишени (если стенки металлические и особенно если мишень движется).

    И только очень маленькая доля энергии луча, (хорошо если 1-2%) действительно разрушает (размягчает, плавит, испаряет, сжигает) материал цели. В случае же снаряда обычно бОльшая часть его энергии (с учетом энергии взрывчатки) тратится именно на поражение цели.

    Вот что об этом можно прочитать в материалах инженерного симпозиума 2012 года по морским боевым системам, доклад Dr. Phillip Sprangle по боевым морским лазерам):

    Laser Lethality

    Thermally ablating 1/4 pound of target material requires ~ 1.3 MJ of laser energy

    1 MJ is equivalent to ~ 1/2 pound of explosive

    For an engagement time of 5 sec the required laser power is > 250kW

    100 kW of absorbed laser power for 2 sec ablates ~ 20 grams (~ 8 pennies)

    Итак, данный инженер докладывает что 100 квт поглощенной мощности за 2 секунды испарит на цели 20 грамм вещества. Что эквивалентно около 40 граммам взрывчатки. Особо подчеркивается что речь идет не о выходной мощности луча, а той что полностью поглотится материалом. А вот какая излучаемая мощность нужна, чтоб столько энергии поглотилось на цели, он скромно умолчал. Очевидно потому что циферки совсем недостижимые выйдут.

    Если же кто-то полагает что снаряд там или пуля тоже растрачивает много энергии впустую на преодоление сопротивления воздуха, то у лазера с этим все гораздо хуже (см. ниже).

    Есть еще большая проблема, если считать по энергии, а не мощности: когда мы считаем отправляемую энергию пушкой - какую скорострельность брать? Там ведь разница в несколько порядков бывает.
    Но наш разоблачитель не только великий физик, он еще и спец по огнестрельному оружию!
    Он-то знает какую скорострельность взять:

    Дульная энергия 12,7 мм крупнокалиберного пулемета НСВ 15-17,5 кдж, при боевой скорострельности 80-100 выстрелов в минуту . Иными словами, даже 100 квт лазер - это "три с половиной" крупнокалиберных пулемета (6000 кдж/мин против 1750)

    Вот это просто прекрасно - он взял боевую скорострельность "Утеса". Т.е. скорострельность с учетом перерывов на прицеливание/перезарядку/охлаждение.
    А для лазера-то он эти перерывы не учел, взял мгновенную мощность, в импульсе.
    Очередное сравнение пальца с жопой.
    Если брать 100 кВт (т.е пиковую мощность) для лазера, то для пулемета нужно брать техническую (пиковую) скорострельность в моменте. Которая для "Утеса" составляет 700-800 выстр/мин.
    И тогда получим 13000 кДж/мин у пулемета против 6000 кДж/мин у 100 квт лазера. И это еще скромненько.

    Можно ведь взять какой-нить скорострел с вращающимся блоком стволов и темпом 6000 выстр/мин.
    И получить отправляемую им энергию более 100 тыс кДж/мин. На два порядка больше чем у лазера!
    Так что в данном случае лазер курит в стороне, как ни считай - хоть по мощности, хоть по выходной энергии.
    При несопоставимо бОльших размерах. Помним, что представляет из себя твердотельный лазер на 100 кВт?

    Вернемся, однако, к пушке. Дульная энергия Ф-22 - 1,35 МДж, в то время как мощность ABL - 1,1 МВт, т.е. 1,1 МДж ЕЖЕСЕКУНДНО. Таким образом, в минуту лазер выбрасывает 48 "снарядов". Переведя мегаватт в тротил, мы получим 240 г взрывчатки в секунду и 14,4 кг в минуту, что эквивалентно содержимому 18 осколочно-фугасных снарядов от все той же пушки.

    Однако еще лучше вернуться к пониманию того, что вот эти все расчеты с энергетикой были изначально затеяны, чтобы сравнить поражающую способность лазера данной мощности со ствольной артиллерией (или стрелковкой).
    Я об этом несколько раз написал, но у Пожидаева не отложилось. Вместо этого он подменил мои прикидки своими, совершенно не понимая их физического смысла. Взял формулы какие ему взбрелись, подставил тупо циферки и получил сущий бред - будто бы минутный "выстрел" лазера ABL эквивалентен по эффекту обстрелу цели 50-тью снарядами 76-мм пушкой.
    В то время как он не мог не видеть ролик, который я привел, где наглядно показано воздействие этого мегаваттного ABL на ракету:

    Тут лазер светит секунд 20? То есть по "энергетическим" расчетам Пожидаева выходит, что лазер "выбросил 16 снарядов Ф-22", и ракета-мишень выдержала аж 15 попаданий из 76-мм ПУШКИ и на 16-ом чего-то там от нее отлетело.
    Это чудо имеет два объяснения:
    то ли ракета-мишень была бронирована как немецкий танк "Тигр",
    то ли энергетические расчеты нашего "физика" являются бреднями, вызванными глобальным непониманием того, что эти расчеты служат для оценки эффекта воздействия на цель, а не тупого жонглирования цифрами из желания поспорить, а также непониманием того, что нельзя выходную энергию лазера путать с поглощаемой энергией на цели.

    Вывод очевиден, кмк..

    Замечу, что я еще скромненько так посчитал мощность пушки, взяв за основу мощность самого выстрела, в то время как время воздействия снаряда на цель зачастую бывает намного меньше, чем время разгона в стволе, а значит мощность поражения цели будет еще больше. Никакой лазер даже близко не сравнится.

    Может быть еще такое возражение что пушка на той дистанции, что поражает лазер - либо не попадет, либо не долетит.
    Да какие проблемы? Возьмите авиационную управляемую ракету, или зенитную. Они тоже входят в понятие обычного оружия и тоже превосходят лазеры по всем статьям.

    Однако фактическая "ценность" лазера выше. Дело в том, что даже при прицельной стрельбе из огнестрельного оружия основная часть "энергии" достается не врагу, а окрестному ландшафту. Виной тому - добрый десяток факторов (ветер, колебания влажности, давления и температуры воздуха, сила Кориолиса и т.д.), обеспечивающих пуле/снаряду неизбежное рассеивание. А поток фотонов летит ровно туда, куда его направили - исключая массу непроизводительных потерь

    Во-первых, здесь как видно Пожидаев забыл об управляемом оружии, которому вовсе не приходится поражать окрестный ландшафт.

    Во-вторых, совсем плохая новость для него - и ветер, и влажность, и пыль и даже просто воздух влияют на энергию лазерного луча гораздо фатальнее, чем на пули/снаряды.

    Что характерно, эту тяжелейшую проблему лазерного оружия он полностью проигнорировал в своем мифоборчестве. Такой вот дотошный опровергатель: тут читаем, тут не читаем, а тут мы рыбу заворачивали.
    Я правда тоже ранее лишь обозначил ее, в общих словах.

    Теперь видимо пора раскрыть этот вопрос подробнее и с цифрами, учитывая что он лишь один, сам по себе, делает невозможным создать эффективное лазерное оружие в условиях атмосферы и реального боя.

    Для этого я воспользуюсь соответствующим научным исследованием от Naval Research Laboratory, о распространении высокоэнергетических лазерных лучей в различных условиях (Propagation of High Energy Laser

    Beams in Various Environments). (спасибо за наводку френду sergeyvz )
    Рассмотрим несколько интересных графиков оттуда:








    На этих графиках показано как зависит мощность луча, дошедшая до цели на расстоянии 5 километров, от излучаемой мощности, для разных длин волн и разных условий в атмосфере (город, море, пустыня и "село").
    Нас интересует тут длина волны 1.045 мкм (темно-синяя кривая), это очень близко к излучению перспективных твердотельных лазеров (1.06 у JHPSSL).
    Во-первых, оказывается что в городском воздухе (при видимости 10 км) есть порог в 30 квт, то есть больше мощности до цели просто не дойдет, какую бы мощность мы не излучали, хоть несколько мегаватт.
    Все остальное поглотит/рассеет городская пыль.
    То есть в городе, в его "чистом" воздухе боевые лазеры практически неприменимы.
    За городом, в сельской местности - порог около 400 квт, тоже немного.
    При этом излучаемая мощность должна быть около 1.3 Мвт - остальное рассеется по пути.

    Откуда берется этот порог? Дело в том что содержащийся в воздухе аэрозоль из твердых частиц приводит к крайне неприятному для лазерщиков явлению - тепловому размытию луча (thermal blooming).
    Механизм такой - начиная с определенной мощности лазер так нагревает твердые частицы, что они разлагаются/испаряются и интенсивнее греют воздух, воздух расширяется и начинает работать для луча как расфокусирующая, рассеивающая линза.
    Дальнейшее повышение мощности луча лишь приводит к увеличению доли "размытой энергии".

    В пустыне и море дело обстоит получше, порога там нет для лазера с длиной волны 1.06, но потери все равно очень велики - на 5 километрах теряется от 70 до 50% энергии луча, соответсвенно. Отсюда понятно, почему американцы так любят демонстрировать свои лазеры на полигоне в пустыне (White Sands) и на море.

    Для сравнения, снаряд пушки хоть и потеряет на дистанции в 5 км 70% своей кинетической энергии из-за торможения, но энергия взрывчатки в нем по пути никак не уменьшится. С лазером же такое невозможно.

    Надо также понимать, что здесь не рассмотрены осадки, туман или какие-то загрязнения воздуха. В этих ситуациях луч уже ослабляется в несколько раз, и вплоть до полного непрохождения, что сводит применение лазерного оружия лишь к случаям хорошей погоды и в отсутствии дымовой завесы или пыли и дыма от взрывов.

    Так что это как раз снаряд летит куда его направили, и честно доносит свой тротил до цели, а "фотоны лазерного луча" по пути греют воздух, воду, пыль, летят большей частью куда угодно, но не к цели.

    Миф 4 . КПД лазеров — единицы процентов .

    Фактически он у боевых лазеров до 20,6%, и это не предел. В рамках программы RELI КПД намечено поднять до 25%. Волоконные лазеры, которые приспособила к военному делу Raytheon, уже сейчас имеют КПД около 30%. У огнестрельного оружия — 20-40%.


    Конкретно наша древняя 76-мм пушка имеет КПД около 35%.
    Современные танковые гладкостволки - более 40%.
    Волоконные лазеры действительно могут иметь КПД до 30%, но они крайне маломощные, даже 100 квтный лазер приходится набирать из многих модулей. Но самая главная проблема не просто в малом КПД, а в том, что сама форма образования побочной энергии в лазерном оружии в виде тепла крайне неблагоприятна для его применения.
    Я уже приводил выше пример с пистолетом.

    Миф 5 . Лазерный луч имеет огромную дифракционную расходимость .

    "Здесь вступает в силу непреодолимый физически закон дифракции, который гласит - излучение лазера всегда расходится с углом = длина волны/диаметр пучка. Если мы возьмем конкретно боевой инфракрасный лазер с длиной волны 2 мкм (на такой длине работают боевые лазеры THEL и т.п.) и диаметр пучка 1 см, то мы получим угол расхождения 0.2 миллирадиана (это очень маленькое расхождение - например, обычные лазерные указки/дальномеры расходятся на 5 миллирадиан и больше). Расхождение 0.2 мрад. на дистанции 100 метров увеличит диаметр пятна с 1 см до примерно 3 см (если кто еще помнит школьную геометрию). То есть плотность воздействия упадет пропорционально площади в 7 раз всего лишь на 100 метрах. А на километре плотность луча упадет уже в 300 раз".

    На самом деле боевой лазер, излучающий пучок исходным диаметром 1 см - это примерно то же, что и маленькие зелёные человечки… т.е. плод нездоровой фантазии, не отягощённой хотя бы минимальными знаниями.

    Вот это мне больше всего нравится.
    Дело в том, что если какие лазеры и использовались реально в качестве средства поражения на поле боя, то вот именно с таким (или даже меньшим) пучком. Просто товарищ Пожидаев сам не отягощен даже минимальными знаниями об этом. Речь о так называемых даззлерах (ослепляющих лазерах). Естественно, их быстро расходящийся пучок не был препятствием, поскольку для ослепления хватало и этого.

    В действительности, при использовании фокусирующей оптики дифракционная расходимость равна примерно λ/D, где лямбда - длина волны, а D - диаметр зеркала (он же - исходный диаметр пучка, постепенно сужающегося к цели из-за фокусировки; большая стартовая "толщина" обеспечивает низкую дифракционную расходимость).

    В случае с ABL длина волны равна 1,315 мкм, а диаметр зеркала — 1,5 м, поделив одно на другое, получаем расходимость около 10 в минус 6-й степени радиан. Иными словами, луч лазерного "Боинга" "расплывется" на километровом расстоянии всего на… 1 миллиметр. На расстоянии 200 км, дифракционная расходимость составит 20 см. Фактическая расходимость луча ABL превышает дифракционный предел всего в 1,2 раза.

    В случае с реальным применением оружия на поле боя никаких зеркал диаметром ни 1.5 метра, ни 50 см и сложнейших систем фокусирующей оптики использовать нельзя. Иначе получаются не боевые лазеры, а полигонные дурилки, исключительно для демонстрации их в идеальных условиях. Если мы хотим иметь что-то вроде лазерного пулемета - то оно по размерам должно быть примерно как пулемет и не бояться ударов, вибрации, грязи и и т.п. Поэтому все идеи с попыткой обойти дифракционную расходимость за счет оптических ухищрений сразу прогорают - пучок должен быть изначально тонким.

    Впрочем, в тех узких нишах применения, когда все же можно использовать прецизионное большое зеркало, как в случае с противоракетным лазерным Боингом (ABL), уход от проблемы с дифракцией привел к другому комическому эффекту - этот лазер получился с фиксированным фокусным расстоянием, потому что фокусирующее зеркало его не может менять кривизну в принципе. Это керамический монолит толщиной 30 см, его целый год шлифуют/полируют!
    Соответственно, ABL мог поражать цели только в определенном узком диапазоне, в котором сфокусирован луч до размера баскетбольного мяча. Взлети ракета в нескольких километрах от самолета - на этой дистанции он бы имел слишком толстый, 1.5 метровый в диаметре луч, и был бы скорей всего бессилен. Во всяком случае, испытаний на близких дистанциях не демонстрировали почему-то. А было б забавно.

    Миф 6 . От лазерного оружия можно легко защититься - например, алюминиевым зеркалом.

    Действительно, металлы могут иметь феерические коэффициенты отражения. Однако, во-первых, эти коэффициенты - в значительной мере "бумажные". Реальная ракета после старта будет иметь повреждения и загрязнения.

    О как? Оказывается реальные боевые ракеты в мире пожидаевских фантазий от кончика до хвоста сплошь покрыты грязью и царапинами. Ведь лазер не будет выискивать чистые места, попадет куда придется. И надо чтоб там непременно были грязь и повреждения, а то лазерщики опростоволосятся.

    Во-вторых, коэффициенты отражения металлов в ближнем инфракрасном диапазоне, как правило, весьма средние - а именно там и работают современные боевые лазеры. Скажем, алюминий, у которого одни из лучших показателей, имеет громадный коэффициент отражения в ИК-диапазоне. Однако на волне в 1 мкм, коэффициент отражения падает до 75%. Между тем, современные "гиперболоиды" излучают именно в "окрестностях" 1 мкм (ABL - 1,315 мкм). При этом 25% от сотен киловатт с лихвой хватит, чтобы разогреть и подплавить тонкий верхний слой обшивки, на чем отражение и закончится — поглощение лазерного излучения быстро растет вместе с ростом температуры, и резко подскакивает после начала плавления.

    Ок, смотрим какие на самом деле коэффициенты отражения у металлов в ближнем ИК-диапазоне.


    Здесь первая прерывистая линия (Nd:YAG) в районе 1 мкм как раз соответсвует излучению наших боевых твердотельных лазеров.

    Оказывается, алюминий поглощает лишь около 7% этого излучения, то есть отражает 93% а не 75%.
    А если сделать медное, серебряное или золотое напыление - то отразится до 97-99%.
    Кстати, титан отражает тоже около 95%. "Весьма средние коэффициенты", ага.
    И что самое обидное, Нагрев металла увеличивает коэффициент поглощения. Однако это не распространяется на не содержащие железо металлы с высокой отражательной способностью, такие как медь и алюминий, потому что эти металлы объединяют в себе высокую отражательную способность и высокую теплопроводность, которые снижают эффективность лазерной резки. Так что у ракеты не получится "подплавить и закончить отражение", как придумал Пожидаев.

    А как же "детский" вопрос - "если лазерный луч можно фокусировать и наводить зеркалом, то почему зеркалом нельзя защититься"? В самих лазерах используются, как правило, многослойные диэлектрические зеркала, способные отражать очень много - но в крайне узком диапазоне и только под строго определенными углами. Кроме того, они охлаждаемые - а со всей поверхностью цели это проделать, как правило, невозможно.


    Как видно по коэффициентам, достаточно тонкого напыления чтоб организовать более чем эффективное ИК-зеркало, которое вовсе не нужно как-то специально охлаждать - можно просто закрутить ракету.
    Иными словами, простой, эффективной и дешевой защиты от мощных лазеров не существует.

    Заявил наш смелый разоблачитель, в очередной раз проигнорировав предложенную мной простейшую и эффективнейшую на 100% защиту - абляционную смолу. Которой защищают спускаемые космические аппараты и боеголовки МБР.
    И которая при испарении может отвести гигантские потоки внешнего тепла.

    Миф 7. Проблема перегрева для лазеров нерешаема . "На каждый мегаватт энергии генерируется 4 мегаватта тепла, которые способны раскалить самолет докрасна и спалить дотла. Система охлаждения со скоростью газового потока 1800 м/сек (сопло Лаваля) оказалась не способна выдуть все вырабатываемое тепло из фюзеляжа".

    В реальности "утилизация" количеств тепла в единицы мегаватт сама по себе достаточно тривиальна. Кто-нибудь видел "раскалившийся докрасна" тепловоз? Между тем, приличный дизель мощностью в пару мегаватт сбрасывает маслу и системе охлаждения более мегаватта тепла. Куда менее проста задача вывода тепла из ограниченного объема собственно "орудия". В случае с химическим лазером ABL разогретые продукты реакции просто выдуваются из резонатора (пресловутым соплом Лаваля), а далее для охлаждения используется жидкий аммиак. Достаточно громоздкая система с проблемными криогенными компонентами — однако она действительно способна "утилизировать" очень внушительные количества тепла.

    Эта проблема на самом деле решена более менее лишь для химических, газовых лазеров с открытым контуром - они тупо сбрасывают раскаленные токсичные газы в окружающую среду. Но у нас прогресс кажется пришел к твердотельным лазерам? Вот там все гораздо хуже.

    Тактические твердотельные лазеры, которым предстоит избавляться от 400 квт тепла, вполне обходятся без криогенных "холодильников". Так, HELLADS — это продукт "скрещивания" нормального твердотельника и лазера с жидким рабочим телом; циркуляция последнего и выводит избыточное тепло за пределы "пушки". Примечателен и свежий продукт General Atomic — аккумулятор тепловой энергии, специально созданный для охлаждения лазеров. Модуль весом 35 кг способен поглотить 230 кВт — тепло расплавляет энергоемкий материал, похожий на воск. В итоге режим HELLADS - до двух минут непрерывного излучения с последующим тридцатисекундным перерывом.

    Нет на сегодня такого HELLADS. Не создан еще такой тактический лазер даже в виде экспериментального образца.
    Сегодняшнее состояние этого проекта таково : создан и испытан некий первичный модуль на 34 кВт (еще в 2011ом году), и теперь нужно нарастить мощность до 150 кВт. Причем это планировали сделать к концу 2012 года, но до сих пор молчок. Никаких новостей. На сайте General Atomics тоже тишина , сплошные обещания, из которых следует что лазер на 150 кВт не создан до сих пор. Похоже не выходит каменный цветок.
    Что касается теплового аккумулятора, то последняя новость о нем была от 2010 года , и там приведена его емкость - 3 Мдж. Это означает что он сможет обеспечить лишь 5 секунд охлаждения 150 кВт лазера. Так что тут вместо фактов какой-то опять незамутненный поток пожидаевских фантазий.

    Миф 8. Мощных и компактных источников энергии для боевых лазеров не существует .

    Отчасти это действительно так - 100 квт твердотельный лазер пока не представляется возможным взгромоздить на что-либо меньшее, чем грузовик из-за необходимости иметь под рукой генератор на 500 квт и конденсаторы соответствующей мощности. Таковы реальные масштабы проблемы - не имеющие ничего общего с фантазиями по поводу "атомных реакторов". На практике гибридный вариант грузовика HEMTT — HEMTT А3 даже в базовой комплектации имеет электрогенератор на 350 киловатт, способный обеспечить до 200 квт "экспортируемой" энергии. При повышении мощности двигателя до 505 л.с. A3 может обеспечить "внешнему" потребителю 400 кВт. Приятным дополнением является батарея конденсаторов на 1,5 мегаджоуля. Иными словами, там, где обитателям блогосферы мерещатся электростанции - на самом деле маячит один грузовик, хотя и довольно высокотехнологичный

    Каковы реальные масштабы проблемы и как заблуждается Пожидаев насчет помещения 100 кВт лазера на высокотехнологичный грузовик - я уже показал выше.

    Миф 9. Каждый выстрел лазера стоит миллионы .

    В действительности один выстрел ABL стоит $10 тыс.; отечественные "16 миллионов" — пропагандистское… преувеличение. Это примерная стоимость незатейливой носимой ПТУР вроде "Фагота". Более серьезные противотанковые ракеты стоят десятки тысяч долларов, Maverick (ракета воздух-поверхность с дальностью в 28 км) - $154 тыс., одна ракета к "Patriot" — $3,8 млн. Стоимость выстрела тактических лазеров еще меньше, чем у ABL — даже у фторводородного THEL она составляла $2-3 тыс., при том, что фактически этот лазер использовал не водород, а достаточно дорогой дейтерий.

    Стоимость одного часа использования лазерного Боинга предполагалась выше 92 000 долларов.
    Всего он мог делать 4-6 выстрелов и патрулировать должен быть десятки часов.
    Отсюда, по самой минимальной оценке стоимость его выстрела получается порядка сотен тысяч долларов.

    Миф 10. Все задачи, которые могут быть решены лазерным оружием, легче и дешевле решаются традиционными средствами .

    Эта теория уже доказала свою несостоятельность. Пример — попытки Израиля защититься от ракетных атак ХАМАС с помощью противоракет (система Iron Dome). Один пуск противоракеты обходится в $30- 40 тыс. Стоимость ракеты для "Града" составляет порядка $1 тыс., стоимость "Кассамов" не превышает $200. Таким образом, перехват будет обходиться в 40-200 раз дороже, чем само средство нападения. Как заметил по этому поводу представитель ХАМАС Тарик Абу Назар, "если каждый удар наших ракетчиков будет стоить израильтянам десятки тысяч долларов, мы будем считать, что цель достигнута". В итоге отдельные злобные газетчики обвиняют в "распиле" не разработчиков лазеров, а тех, кто закрыл соответствующую израильско-американскую программу. Ограниченно применимой - из-за малого радиуса действия и огромного расхода боеприпасов — оказалась и система Centurion.

    История израильской борьбы с ракетными атаками доказала ровно обратное.
    Как общеизвестно, изначально для этого разрабатывали лазерную установку THEL.
    Израиль потратил большие деньги, но все кончилось ничем - система была очевидно небоеспособна и проект закрыли.
    Ее неустранимые недостатки были очевидны с самого начала участникам проекта , начиная с того что люди буквально сидели на цистернах с крайне токсичными компонентами, что привело бы к катастрофе при попадании в установку копеечной ракеты, заканчивая ее неспособностью поражать цели при плохой погоде.

    В итоге израильтяне пришли к старым добрым зенитным ракетам, системе Iron Dome и теперь массово их используют.
    Видимо считают что ущерб от попадания палестинских ракет в населенные пункты, от гибели гражданских все же выше стоимости противоракет.

    Разумеется, это далеко не полный список легенд о лазерах. Большинство из них построено по тому же принципу — либо сознательная ложь, либо старательное превращение мухи в слона. На самом деле лазеры на поле боя - реальны, а армия, которая сможет обзавестись ими, получит внушительное преимущество.

    Сказал фанат лазеров, построив буквально каждое свое мифоразоблачение на сознательной лжи, нелепых выдумках и передергиваниях.

    Так что реальна лишь потрясающая техническая безграмотность бескорыстных поборников лазерного оружия и безграничные аппетиты и фуфлогонство его разработчиков.

    Поэтому как и , эту тему с лазерным оружием прекрасно можно использовать в качестве лакмуса для выявления безграмотных военных экспердов и прочих журнализдов.

    В узконаправленный луч, как правило используется двояковыпуклая линза -коллиматор . Однако при качественной фокусировке луча (которую можно произвести самостоятельно подкручивая прижимную гайку линзы), указку можно использовать для проведения опытов с лазерным лучом (например, для изучения интерференции). Мощность наиболее распространенных лазерных указок 0,1-50 мВт , в продаже имеются и более мощные до 2000 мВт . В большинстве из них лазерный диод не закрыт, поэтому разбирать их надо крайне осторожно. Со временем открытый лазерный диод «выгорает», из-за чего его мощность падает. Со временем подобная указка практически перестанет светить, вне зависимости от уровня заряда батарейки . Зелёные лазерные указки имеют сложное строение и больше напоминают по устройству настоящие лазеры.

    Лазерная указка

    Типы лазерных указок

    Ранние модели лазерных указок использовали гелий-неоновые (HeNe) газовые лазеры и излучали в диапазоне 633 нм. Они имели мощность не более 1 мВт и были очень дорогими. Сейчас лазерные указки, как правило, используют менее дорогие красные диоды с длиной волны 650-670 нм. Указки чуть подороже используют оранжево-красные диоды с λ=635 нм, которые делают их более яркими для глаз, так как человеческий глаз видит свет с λ=635 нм лучше, чем свет с λ=670 нм. Производятся и лазерные указки других цветов; например, зеленая указка с λ=532 нм - хорошая альтернатива красной с λ=635 нм, поскольку человеческий глаз приблизительно в 6 раз чувствительнее к зелёному свету по сравнению с красным. В последнее время набирают популярность жёлто-оранжевые указки с λ=593,5 нм и синие лазерные указки с λ=473 нм.

    Красные лазерные указки

    Самый распространенный тип лазерных указок. В этих указках используется лазерные диоды с коллиматором. Мощность варьируется приблизительно от одного милливатта до ватта. Маломощные указки в форм-факторе брелока питаются от маленьких батареек-«таблеток» и на сегодняшний день (апрель 2012 г.) стоят порядка 1$. Мощные красные указки - одни из самых дешевых по соотношению цена/мощность. Так, фокусируемая лазерная указка мощностью 200мВт, способная зажигать хорошо поглощающие излучение материалы (спички, изоленту, тёмную пластмассу и т. д.), стоит порядка 20-30$. Длина волны - примерно 650 нм.

    Более редкие красные лазерные указки используют Твердотельный лазер c диодной накачкой (diode-pumped solid-state , DPSS) и работают на длине волны 671 нм.

    Зеленые лазерные указки

    Устройство зеленой лазерной указки типа DPSS, длина волны 532nm.

    Луч лазерной указки 100мВт, направленный в ночное небо.

    Зеленые лазерные указки начали продаваться в 2000 году. Самый распространенный тип твердотельных с диодной накачкой (DPSS) лазеров. Лазерные диоды зелёного цвета не производятся, поэтому используется другая схема. Устройство намного сложнее, чем у обычных красных указок, и зелёный свет получают довольно громоздким способом.

    Сначала мощным (обычно >100 мВт) инфракрасным лазерным диодом с λ=808 нм накачивается кристалл ортованадата иттрия с неодимовым легированием (Nd:YVO 4), где излучение преобразуется в 1064 нм. Потом, проходя через кристалл титанила-фосфата калия (KTiOPO 4 , сокр. KTP), частота излучения удваивается (1064 нм → 532нм) и получается видимый зелёный свет. КПД схемы около 20 %, большая часть приходится на комбинацию 808 и 1064 нм ИК . На мощных указках >50 мВт нужно устанавливать инфракрасный фильтр (IR-фильтр ), чтобы убрать остатки ИК-излучения и избежать повреждения зрения. Также стоит отметить высокую энергозатратность зелёных лазеров - в большинстве используются две AA/AAA/CR123 батареи.

    473 нм (бирюзовый цвет)

    Данные лазерные указки появились в 2006 году и имеют схожий с зелёными лазерными указками принцип работы. 473 нм свет обычно получают путем удвоения частоты 946 нм лазерного излучения. Для получения 946 нм используется кристалл алюмо-иттриевого граната с добавками неодима (Nd:YAG).

    445 нм (синий цвет)

    В этих лазерных указках свет излучается мощным синим лазерным диодом. Большинство подобных указок относится к 4-му классу лазерной опасности и представляет очень серьёзную опасность для глаз и кожи. Своё активное распространение начали в связи с выпуском компанией Casio проекторов , использующих вместо привычных ламп мощные лазерные диоды.

    Фиолетовые лазерные указки

    Свет в фиолетовых указках генерируется лазерным диодом, излучающим луч с длиной волны 405 нм. Длина волны 405 нм находится на границе диапазона, воспринимаемого человеческим зрением и поэтому лазерное излучение таких указок кажется тусклым. Однако, свет указки вызывает флюоресценцию некоторых предметов, на которые он направлен, яркость которой для глаза выше, чем яркость самого лазера.

    Фиолетовые лазерные указки появились сразу после появления Blu-ray -приводов, в связи с началом массового производства лазерных диодов на 405 нм.

    Жёлтые лазерные указки

    В жёлтых лазерных указках используется DPSS лазер, излучающий одновременно две линии: 1064 нм и 1342 нм. Это излучение попадает в нелинейный кристалл, который поглощает фотоны этих двух линий и излучает фотоны 593,5 нм (суммарная энергия 1064 и 1342 нм фотонов равна энергии фотона 593,5 нм). КПД таких жёлтых лазеров составляет около 1 %.

    Использование лазерных указок

    Безопасность

    Лазерное излучение опасно при попадании в глаза.

    Обычные лазерные указки имеют мощность 1-5 мВт и относятся к классу опасности 2 - 3А и могут представлять опасность, если направлять луч в человеческий глаз достаточно продолжительное время или через оптические приборы. Лазерные указки мощностью 50-300 мВт относятся к классу 3B и способны причинить сильные повреждения сетчатке глаза даже при кратковременном попадании прямого лазерного луча, а также зеркально или диффузно отражённого.

    В лучшем случае лазерные указки оказывают только раздражающее воздействие. Но последствия будут опасными, если луч попадает в чей-то глаз или направлен в водителя или пилота и может отвлечь их или даже ослепить. Если это приведёт к аварии, то повлечёт за собой уголовную ответственность.

    Всё более многочисленные «лазерные инциденты» вызывают в России, Канаде, США и Великобритании требования ограничить или запретить лазерные указки. Уже сейчас в Новом Южном Уэльсе предусмотрен штраф за обладание лазерной указкой, а за «лазерное нападение» - срок лишения свободы до 14 лет.

    Также важно учесть, что у большинства дешёвых китайских лазеров, работающие по принципу накачки (то есть зелёные, жёлтые и оранжевые) отсутствует ИК-фильтр ради соображения экономии, и такие лазеры фактически представляют большую опасность для органов зрения, чем заявлено производителями.

    Примечания

    Ссылки

    • Laser Pointer Safety website Включает данные о безопасности
    Схема высокостабильного СС2 - лазера, построенного по многоходовой схеме.  

    Начиная с момента создания твердотельных лазеров и по настоящее время происходит непрерывное наращивание мощности их излучения. Однако, если в первые годы темпы роста были для всех основных типов твердотельных лазеров примерно одинаковы, то в последнее время произошло заметное снижение темпов роста мощности излучения лазеров на рубине и гранате по сравнению с лазерами на стекле с неодимом.  

    Излучение лазера обусловлено индуцированным испусканием, в результате которого излучение фотонов частично синхронизовано. Степень синхронизации и число квантов, испущенных в любой момент времени, характеризуются статистическими параметрами, такими, как среднее число испускаемых фотонов и средняя интенсивность испускания. Поэтому спектр мощности излучения лазера оказывается более или менее узким и его автокорреляционная функция ведет себя подобно автокорреляционной функции генератора синусоидальных колебаний, выходной сигнал которого нестабилен по фазе и по амплитуде.  

    Это объясняется главным образом тем, что газовые лазеры с приемлемыми параметрами выпускаются отечественной и зарубежной промышленностью и практически могут использоваться телеграфистами. Однако у этих лазеров имеется ограниченное количество дискретных длин волн излучения, пригодных для съемки монохромных и цветных голографических изображений. Выбор длины волны определяется не только мощностью излучения лазера на этой длине волны, но также возможностью максимального согласования длин волн записи и воспроизведения с точки зрения создания оптимального изображения для субъективного восприятия зрителем.  

    На рис. 147, б показаны варианты размещения датчиков при реализации данного способа измерения. При использовании для измерения одного датчика его целесообразно поместить в место дифракционной картины, соответствующее точке А. Однако в случае использования одного датчика сильное влияние на результат измерения оказывают нестабильность мощности излучения лазера и неравномерность распределения интенсивности в поперечном сечении пучка, проявляющаяся при поперечном смещении измеряемого изделия.  

    Их свойства рассмотрены выше. Число типов, выпускаемых серийно, составляет многие десятки. Диапазон длин волн их излучения охватывает УФ, ВИ и ИК диапазоны области спектра. Мощность излучения лазеров колеблется от 0 1 мВт до 10 Вт.  


    В микрофлуоресценции применяется лазерное возбуждение, которое, естественно, имеет преимущества перед возбуждением обычными источниками света. Высокая когерентность и направленность излучения лазеров позволяет достигать чрезвычайно высоких плотностей мощности излучения. В табл. 8.2 приведено сравнение плотностей мощности, достигаемых различными источниками. Освещение лазером является наиболее интенсивным, и благодаря высокой плотности мощности излучения лазеров микрофлуоресцентный анализ получает ряд преимуществ.  

    Однако большинство из них изучено в растворах, и только несколько детальных исследований с поляризационными измерениями выполнено на монокристаллах. Ситуация полностью изменилась с появлением лазера непрерывного действия, сколлимированное, поляризованное и практически монохроматическое излучение которого является идеальным для спектроскопии КР монокристаллов даже небольшого размера. Сразу после открытия эффекта КР стало ясно значение измерений анизотропии комбинационного рассеяния кристаллов для отнесения колебаний. Однако такие исследования смогли стать рутинными лишь после того, как в качестве источника излучения был использован лазер. Коллимация пучка более важна, чем мощность излучения лазера, а последняя часто меньше мощности хороших ламп типа Торонто, применение которых стимулировало развитие спектроскопии КР в течение 50 - х и начале 60 - х годов.  

    Чтобы увеличить число атомов, участвующих почти одновременно в усилении светового потока, необходимо задержать начало генерации, чтобы накопить как можно больше возбужденных атомов, создающих инверсную заселенность, для чего надо поднять порог генерации лазера и уменьшить добротность. Например, можно нарушить параллельность зеркал, что резко уменьшит добротность системы. Если при такой ситуации начать накачку, то даже при значительной инверсии заселенности уровней генерация не начинается, поскольку порог генерации высок. Поворот зеркала до параллельного другому зеркалу положения повышает добротность системы и тем самым понижает порог генерации. Поэтому мощность излучения лазера сильно увеличивается. Такой способ управления генерацией лазера называется методом модулированной добротности.  

    Такая возможность реализуется на практике путем модуляции добротности лазера. Осуществляется это следующим образом. Представьте себе, что одно из зеркал полости лазера удалено. С помощью подсветки осуществляется накачка лазера, и заселенность верхнего уровня достигает своего максимального значения, однако стимулированного излучения пока еще нет. Пока заселенность все еще остается инвертированной, удаленное ранее зеркало быстро вдвигается на место. При этом возникает вынужденное излучение, происходит быстрое уменьшение заселенности верхнего уровня и возникает гигантский импульс продолжительностью всего 10 - 8 с. При излучаемой в импульсе энергии 25 Дж мощность излучения лазера составляет 2 5 - 109 Вт - весьма внушительная величина, приблизительно равная мощности крупной электростанции. Правда, электростанция работает на этом уровне мощности круглый год, а не 10 - - 8 с. В первых моделях лазеров перемещение зеркал производилось механическим способом, но сейчас это делается электрооптическим способом с помощью ячейки Керра или Поккельса.