Алюминиевый провод допустимая нагрузка. Почему кабели одного сечения имеют разный диаметр жил

Перед покупкой любого провода или кабеля вы сначала рассчитываете его сечение и только потом идете в магазин. Просите продавца, чтобы он дал вам хороший кабель, и чтобы его сечение соответствовало ГОСТу, а не какую-нибудь подделку. Правильно?

Давайте сначала определимся с некоторой терминологией.

Номинальное сечение жилы – это площадь поперечного сечения токопроводящей жилы, указываемая в маркировке кабельного изделия. То есть это те цифры, которые вы читаете на бирке кабеля или на его изоляции.

Фактическое сечение жилы – это площадь поперечного сечения токопроводящей жилы, определенная путем измерений. Это когда вы с помощью штангенциркуля измеряете диаметр жилы и потом высчитываете ее площадь.

При производстве кабелей и проводов заводы должны придерживаться ГОСТа 22483-2012 «Жилы токопроводящие для кабелей, проводов и шнуров». Давайте верить, что производители придерживаются данных стандартов. Так спится лучше.

В данном документе говорится, что токопроводящие жилы должны соответствовать только одному основному параметру - это электрическому сопротивлению постоянному току. Есть нормы, которые не должен превышать 1 километр жилы при 20 0 С. В таблице ниже приведены эти значения некоторых популярных сечений.

Номинальное сечение жилы, мм 2 Электрическое сопротивление постоянному току 1 км жилы при 20 0 С, Ом, не более
Медные жилы Алюминиевые жилы
0,75 24,5 -
1,0 18,1 -
1,5 12,1 18,1
2,5 7,41 12,1
4,0 4,61 7,41
6,0 3,08 5,11
10,0 1,83 3,08
16,0 1,15 1,91
25,0 0,727 1,2

Вот номинальное сечение жил кабеля данный ГОСТ жестко не нормирует. Там написано:

"Для каждого конкретного размера жилы установлено требование по максимальному значению электрического сопротивления. Фактическое сечение жил может отличаться от номинального при соответствии электрического сопротивления требованиям настоящего стандарта."

Однако есть таблица, в которой указан максимальный диаметр жил для каждого сечения. Как видите уменьшать диаметр, а значит и сечение можно.

Номинальное сечение жилы, мм 2 Диаметр круглых медных жил, мм, не более
Провода класса 1 (однопроволочные) Провода класса 2 (многопроволочные)
0,75 1,0 1,2
1,0 1,2 1,4
1,3 1,5 1,7
2,5 1,9 2,2
4,0 2,4 2,7
6,0 2,9 3,3
10,0 3,7 4,2
16,0 4,6 5,3
25,0 5,7 6,6

Так вот поэтому получается, что фактическое сечение жил (измеренное вами) может отличаться от номинального (указанного на бирке). В этом по сути ничего страшного нет, если завод изготовитель не превысил нормированное значение электрического сопротивления постоянному току. К сожалению, этот параметр вы не сможете проверить в магазине. Конечно, если измеренное сечение будет намного меньше номинального, то лучше воздержитесь от покупки такого кабеля.

Почему тогда диаметр проводов разный при одном и том же электрическом сопротивлении токопроводящей жилы?

Это во многом зависит от материала и самого процесса изготовления. Это мы думаем, что медь она и в Африке медь. На самом деле не так. Медь бывает разных марок, и производство жил имеет разный технологический процесс.

Разные технологии позволяют выдерживать электрическое сопротивление, но при этом уменьшать затраты на изготовление кабеля, путем уменьшения фактического сечения и ухудшения очистки меди от разных примесей. Попробуйте дома в каком-нибудь дешёвом китайском устройстве магнитом проверить провода. Я не удивлюсь, если они будут притягиваться к магниту, так как видел такое. Медь и алюминий не магнитится, следовательно там присутствуют дешевые стальные сплавы.

Как видите уменьшение фактического сечения жил разрешено ГОСТом. Значит все сводится к совести завода изготовителя, т.е. делается это законно. А мы знаем, что совесть у них чиста и прозрачна, что ее не видать. Особенно у китайских производителей.

Не забываем улыбаться:

Во время операции гаснет свет.
- Доктор, мы его теряем! Теряем! Все, потеряли…
- Ничего, сейчас электрики свет починят и тогда найдем. Далеко не уползет. Он под наркозом. Тем более, я уже разрез сделал…

Предисловие

Проводники электричества - это различные металлы и сплавы, которые позволяют передавать электрический ток от трансформаторного распределительного щитка к пункту конечного назначения, т.е. к бытовому прибору.

Cодержание

Проводники электричества — это различные металлы и сплавы, которые позволяют передавать электрический ток от трансформаторного распределительного щитка к пункту конечного назначения, т.е. к бытовому прибору. Проводники электрического тока применяются при производстве проводки и силовых кабелей. Самый распространенный электрический проводник — это медь. Алюминий немногим уступает ей по своим эксплуатационным свойствам электрического проводника.

Предлагаем вам обзорный материал, в котором описаны характеристики проводников электрического тока, используемых в частном домостроении.

В бытовых условиях в качестве проводника чаще всего используются алюминий, медь и алюмомедь.

Алюминиевые жилы

Алюминиевые жилы - легкие и дешевые материалы, обладающие высокой электропроводностью. Алюминий хорошо отдает тепло, химически стоек. Однако у него есть несколько недостатков.

  1. Не обладает достаточной гибкостью. Провода, выполненные из этого металла, применяют только в стационарных установках и там, где при прокладке кабеля нет острых углов поворота.
  2. Окисляется на воздухе. Тугоплавкая пленка темного цвета, образующаяся на поверхности алюминия, обладает диэлектрическими свойствами и в местах контакта может серьезно препятствовать течению электрического тока. Отсюда излишний перегрев и возможность потери контакта в местах соединения.
  3. Чистый алюминий - прекрасный проводник, но избавить его от примесей очень трудно. Электропроводность этого металла в полтора раза меньше, чем у меди.

Медная жила кабеля

Медная жила кабеля имеет более высокие качественные характеристики по сравнению с алюминием. Она обладает высокими теплопроводящими и токопроводящими свойствами и не образует оксидную пленку. Медный кабель более гибкий. Если минимальная толщина алюминиевых проводников 2,5 мм 2 , то из меди можно изготавливать жилы толщиной 0,3 мм 2 . Однако у меди также есть свои недостатки: дороговизна, высокая плотность, а, следовательно, и вес, невозможность прямого соединения с алюминиевыми жилами. Медь с алюминием образуют гальваническую пару, и возникающие токи разрушают контакт. Чтобы этого избежать, используют специальные клеммы соединения.

Алюмомедь - механический композит, состоящий из алюминиевого сердечника и медной рубашки, которая занимает 10 % от объема жилы. Этот материал имеет более низкую стоимость. Однако, несмотря на сочетание положительных качественных характеристик меди, и алюминия, проводники из алюмомеди по всем показателям уступают проводникам из отдельных металлов.

Номинальное сечение токопроводящей медной жилы кабеля: расчет и выбор

Номинальное сечение жилы в выпускаемых проводах и кабелях варьируется от 0,3 до 800мм 2 . Как правило, в быту используют проводники, в которых сечение жилы кабеля варьируется от 0,35 до 16 мм 2 , редко - 25 мм 2 . Выбор сечения жил кабеля зависит от напряжения и силы тока. Чем выше проводимая нагрузка, тем больше должно быть сечение. Формула, по котрой производится расчет сечения жилы, сложна, поэтому рекомендуется воспользоваться таблицей «Зависимость сечения токопроводящих медных жил от силы тока». В ней приведены сведения, касающиеся наиболее часто используемого сечения медных жил. Данные о зависимости между сечением медного проводника и типом нагрузки на сеть представлены в таблице «Зависимость сечения токопроводящих медных жил от подключаемой к ним электрической нагрузки».

Таблица. Зависимость сечения токопроводящей жилы от силы тока.

Сечение токопроводящей жилы, мм 2

Напряжение сети

сила тока, А

мощность, кВт

сила тока, А

мощность, кВт

Таблица. Зависимость сечения токопроводящей медной жилы от подключаемой к ним электрической нагрузки.

Максимальная мощность однофазной нагрузки (при напряжении 220 В), кВт

Сила тока, А

Сечение медных жил проводов и кабелей, мм 2

нагрузки (допустимая длительная для проводов и кабелей)

автомата защиты

номинальная

предельная

Группы освещения и сигнализации

Розеточные группы и электрические полы

Водонагреватели и кондиционеры

Электрические плиты и духовые шкафы

Вводные питающие линии

Количество проволок в жиле

Количество проволок в жиле влияет на гибкость кабеля или провода: чем больше их приходится на единицу сечения, тем гибче проводник. Если проводник должен держать форму, например, при монтаже распределительных щитов, применяют одно проволочные жилы. Различают жилы гибкие и с повышенной гибкостью. Последние используются при изготовлении шнуров.

Изоляция жил кабеля и её номинальная толщина

Изоляция жил кабеля - важнейшая часть проводников, которая придает кабелям и проводам определенные характеристики. В зависимости от изоляции они могут быть бронированными, термостойкими, водонепроницаемыми, защищенными от давления и т. д. Основные задачи изоляции: защита от утечки и поражения электрическим током, механическая и термическая защита кабеля, индикация проводников. Изоляция подразделяется на токопроводящую жилу (ТПЖ) и оболочку, которая покрывает проводник снаружи.

Основной характеристикой изоляционного материала является электрическая прочность - такое значение силы тока, при котором заряд пробивает слой номинальной толщины изоляции жил в 1 мм. Изоляция жил всех кабелей, используемых в быту, имеют высокую электрическую прочность. Пробой в ней возможен лишь при механическом повреждении или длительной службе провода.

Нагревостойкость определяет способность изоляции выдерживать действие высоких температур. Чем выше показатель, тем большую температуру нагрева может выдержать изоляция, не теряя своих свойств.

К характеристикам изоляции относят также морозостойкость и механическую прочность. Чем крепче и устойчивее на разрыв и изгиб материал изолятора, тем лучше. С понятием механической прочности связан термин «опрессовка». При изготовлении кабелей или проводов, когда внешняя оболочка надевается на изоляцию ТПЖ, они опрессовываются, приобретая плотность и структуру (плоскую или круглую). Покупая проводник, убедитесь, что он опрессован с надлежащей тщательностью.

Номинальная толщина изоляции жил кабеля зависит от того материала, который используется при обмотке. Среди наиболее распространенных изоляционных материалов можно выделить следующие.

Поливинилхлорид (ПВХ) - наиболее распространенный изоляционный материал. Представляет собой мягкий и гибкий полимер белого цвета, обладающий высокой устойчивостью к кислотам и щелочам, практически не горюч. К недостаткам ПВХ относится низкая морозоустойчивость (до -20°C), хотя в последнее время созданы и холодоустойчивые модификации. Кроме того, при нагревании материал выделяет диоксины (вредные вещества с едким запахом) и хлороводород. Последний, попадая в процессе дыхания на слизистую оболочку способен соединяться с водой и образовывать разъедающую соляную кислоту.

Резина - отличный изолятор, изготавливаемый из искусственного или природного каучука. Придает кабелю повышенную гибкость и морозостойкость.

Полиэтилен - изолятор, весьма устойчивый к агрессивным веществам и действию низких температур.

Силиконовая резина - эластичный термостойкий изолятор, который при сгорании образует диэлектрическую защитную пленку.

Пропитанная бумага имеет отличные токоизолирующие свойства, но, к сожалению, хорошо горит и требует дополнительные материалы для термоизоляции.

Карболит - термостойкий, но хрупкий пластический материал. Служит для производства розеточных колодок и оболочек кабельных сжимов.

Металлическая фольга образует экран, который отражает посторонние электромагнитные сигналы и служит для выравнивания внутреннего электрического поля. Такую изоляцию, как правило, имеют информационные кабели.

Металл . Используется для защиты от механического воздействия в силовых кабелях высокого напряжения, которые закладываются в землю. Так называемые бронированные кабели. Над броней и под ней ставятся защитные подушки, предохраняющие саму броню от внешнего воздействия и нижележащую изоляцию от воздействия металла брони соответственно.

Чтобы, глядя на кабель с обоих концов, не пришлось гадать, где какая жила, все ТПЖ заключают в изоляционную оболочку различных цветов. Данная маркировка несет дополнительную информационную нагрузку. Обычно в трехжильном кабеле используют жилы следующих цветов: белого (фаза), красного (нуль) и желто-зеленого (заземление). Желто-зеленый цвет для заземления считается устойчивым цветом привязки, в остальном можно использовать любую гамму по желанию монтирующего цепь. Главное - запомнить, какой цвет что обозначает.

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.


  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.

Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).


  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.


Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм 2 .

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.



  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.