Взаимно обратные числа. Сложение десятичных дробей


В этой статье мы поговорим про смешанные числа . Сначала дадим определение смешанных чисел и приведем примеры. Дальше остановимся на связи между смешанными числами и неправильными дробями. После этого покажем, как перевести смешанное число в неправильную дробь. Наконец, изучим обратный процесс, который называется выделением целой части из неправильной дроби.

Навигация по странице.

Смешанные числа, определение, примеры

Математики договорились, что сумму n+a/b , где n - натуральное число , a/b – правильная обыкновенная дробь , можно записывать без знака сложения в виде . Например, сумму 28+5/7 можно кратко записать как . Такую запись назвали смешанной, а число, которое соответствует данной смешанной записи, назвали смешанным числом.

Так мы подошли к определению смешанного числа.

Определение.

Смешанное число – это число, равное сумме натурального числа n и правильной обыкновенной дроби a/b , и записанное в виде . При этом число n называют целой частью числа , а число a/b называют дробной частью числа .

По определению смешанное число равно сумме свой целой и дробной части, то есть, справедливо равенство , которое можно записать и так: .

Приведем примеры смешанных чисел . Число - это смешанное число, натуральное число 5 – целая часть числа , а - дробная часть числа . Другими примерами смешанных чисел являются .

Иногда можно встретить числа в смешанной записи, но имеющие дробной частью неправильную дробь, например, или . Эти числа понимают как сумму их целой и дробной части, например, и . Но такие числа не подходят под определение смешанного числа, так как дробной частью смешанных чисел должна быть правильная дробь.

Число - это тоже не смешанное число, так как 0 не натуральное число.

Связь между смешанными числами и неправильными дробями

Проследить связь между смешанными числами и неправильными дробями лучше всего на примерах.

Пусть на подносе лежит торт и еще 3/4 такого же торта. То есть, по смыслу сложения на подносе находится 1+3/4 торта. Записав последнюю сумму в виде смешанного числа, констатируем, что на подносе находится торта. Теперь целый торт разрежем на 4 равные доли. В результате на подносе окажется 7/4 торта. Понятно, что «количество» торта при этом не изменилось, поэтому .

Из рассмотренного примера явно видна такая связь: любое смешанное число можно представить в виде неправильной дроби .

А теперь пусть на подносе находятся 7/4 торта. Сложив из четырех долей целый торт, на подносе окажется 1+3/4 , то есть, торта. Отсюда видно, что .

Из этого примера понятно, что неправильную дробь можно представить в виде смешанного числа . (В частном случае, когда числитель неправильной дроби делится нацело на знаменатель, неправильную дробь можно представить в виде натурального числа, например, , так как 8:4=2 ).

Перевод смешанного числа в неправильную дробь

Для выполнения различных действий со смешанными числами оказывается полезным навык представления смешанных чисел в виде неправильных дробей. В предыдущем пункте мы выяснили, что любое смешанное число можно перевести в неправильную дробь. Пришло время разобраться, как осуществляется такой перевод.

Запишем алгоритм, показывающий как перевести смешанное число в неправильную дробь :

Рассмотрим пример перевода смешанного числа в неправильную дробь.

Пример.

Представьте смешанное число в виде неправильной дроби.

Решение.

Выполним все необходимые шаги алгоритма.

Смешанное число равно сумме его целой и дробной части: .

Записав число 5 как 5/1 , последняя сумма примет вид .

Чтобы закончить перевод исходного смешанного числа в неправильную дробь, осталось выполнить сложение дробей с разными знаменателями : .

Краткая запись всего решения такова: .

Ответ:

Итак, чтобы осуществить перевод смешанного числа в неправильную дробь, нужно выполнить следующую цепочку действий: . В итоге получена , которую мы и будем использовать в дальнейшем.

Пример.

Запишите смешанное число в виде неправильной дроби.

Решение.

Воспользуемся формулой для перевода смешанного числа в неправильную дробь. В этом примере n=15 , a=2 , b=5 . Таким образом, .

Ответ:

Выделение целой части из неправильной дроби

В ответе не принято записывать неправильную дробь. Неправильную дробь предварительно заменяют либо равным ей натуральным числом (когда числитель делится нацело на знаменатель), либо проводят так называемое выделение целой части из неправильной дроби (когда числитель не делится нацело на знаменатель).

Определение.

Выделение целой части из неправильной дроби – это замена дроби равным ей смешанным числом.

Осталось узнать, как можно выделить целую часть из неправильной дроби.

Это очень просто: неправильная дробь a/b равна смешанному числу вида , где q - неполное частное, а r – остаток от деления a на b . То есть, целая часть равна неполному частному от деления a на b , а остаток равен числителю дробной части.

Докажем это утверждение.

Для этого достаточно показать, что . Переведем смешанное в неправильную дробь так, как мы это делали в предыдущем пункте: . Так как q – неполное частное, а r – остаток от деления a на b , то справедливо равенство a=b·q+r (при необходимости смотрите

Долей единицы и представляется в виде \frac{a}{b} .

Числитель дроби (a) — число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) — число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

Скрыть Показать

Основное свойство дроби

Если ad=bc , то две дроби \frac{a}{b} и \frac{c}{d} считаются равными. К примеру, равными будут дроби \frac35 и \frac{9}{15} , так как 3 \cdot 15 = 15 \cdot 9 , \frac{12}{7} и \frac{24}{14} , так как 12 \cdot 14 = 7 \cdot 24 .

Из определения равенства дробей следует, что равными будут дроби \frac{a}{b} и \frac{am}{bm} , так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит \frac{a}{b} = \frac{am}{bm} — так выглядит основное свойство дроби .

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, \frac{45}{60}=\frac{15}{20} (числитель и знаменатель делится на число 3 ); полученную дробь снова можно сократить, разделив на 5 , то есть \frac{15}{20}=\frac 34 .

Несократимая дробь — это дробь вида \frac 34 , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: \frac{2}{3} и \frac{5}{8} с разными знаменателями 3 и 8 . Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби \frac{2}{3} на 8 . Получаем следующий результат: \frac{2 \cdot 8}{3 \cdot 8} = \frac{16}{24} . Затем умножаем числитель и знаменатель дроби \frac{5}{8} на 3 . Получаем в итоге: \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24} . Итак, исходные дроби приведены к общему знаменателю 24 .

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

\frac{7}{3}+\frac{1}{4}=\frac{7 \cdot 4}{3}+\frac{1 \cdot 3}{4}=\frac{28}{12}+\frac{3}{12}=\frac{31}{12} .

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b} ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ,

то есть перемножают отдельно числители и знаменатели.

Например:

\frac{3}{5} \cdot \frac{4}{8} = \frac{3 \cdot 4}{5 \cdot 8}=\frac{12}{40} .

Деление обыкновенных дробей

Деление дробей производят следующим способом:

\frac{a}{b} : \frac{c}{d}= \frac{ad}{bc} ,

то есть дробь \frac{a}{b} умножается на дробь \frac{d}{c} .

Пример: \frac{7}{2} : \frac{1}{8}=\frac{7}{2} \cdot \frac{8}{1}=\frac{7 \cdot 8}{2 \cdot 1}=\frac{56}{2} .

Взаимно обратные числа

Если ab=1 , то число b является обратным числом для числа a .

Пример: для числа 9 обратным является \frac{1}{9} , так как 9 \cdot \frac{1}{9}=1 , для числа 5 — \frac{1}{5} , так как 5 \cdot \frac{1}{5}=1 .

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10\,000, ..., 10^n .

Например: \frac{6}{10}=0,6;\enspace \frac{44}{1000}=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5\frac{1}{10}=5,1;\enspace \frac{763}{100}=7\frac{63}{100}=7,63 .

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

Пример: 5 — делитель числа 100 , поэтому дробь \frac{1}{5}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{20}{100}=0,2 .

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Вычитание десятичных дробей

Выполняется аналогично сложению.

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 . Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2 ). В итоге получаем 2,7 \cdot 1,3=3,51 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10\,000 = 14 700 .

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8: 0,09= \frac{28}{10} : \frac {9}{100}= \frac{28 \cdot 100}{10 \cdot 9}=\frac{280}{9}=31 \frac{1}{9} .

Правильные и неправильные дроби. Смешанные числа. Обыкновенная дробь - это число вида где - натуральные числа, например Число называется числителем дроби, - знаменателем. В частности, может быть в этом случае дробь имеет вид но чаще пишут просто . Это означает, что всякое натуральное число можно представить в виде обыкновенной дроби со знаменателем 1. Запись - другой вариант записи

Среди обыкновенных дробей различают правильные и неправильные дроби.

Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.

Всякую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби (или в виде натурального числа, если дробь - такова, что кратно и, например ).

Пример. Представить неправильную дробь в виде суммы натурального числа и правильной дроби:

Решение,

Принято сумму натурального числа и правильной дроби записывать без знака сложения, т. е. вместо пишут а вместо пишут . Число, записанное в таком виде, называется смешанным числом. Оно состоит из двух частей: целой и дробной. Так, для числа 3 целая часть равна 3, а дробная Всякую неправильную дробь можно записать в виде смешанного числа (или в виде натурального числа). Верно и обратное: всякое смешанное или натуральное число можно записать в виде неправильной дроби. Например,

10. Равенство дробей. Основное свойство дроби. Сокращение дробей.

Две дроби и считаются равными, если . Например, равными будут дроби и - (так как (так как ).

Из определения равенства дробей следует, что равными будут дроби и так как а здесь мы используем сочетательное и переместительное свойства умножения натуральных чисел (см. п. 2). Значит, т. е. если числитель и знаменатель данной дроби умножить или разделить на

одно и то же натуральное число, то получится дробь, равная данной. Это свойство называется основным свойством дроби.

Пользуясь основным свойством дроби, иногда можно заменить данную дробь другой, равной данной, но с меньшим числителем и меньшим знаменателем. Такую замену называют сокращением дроби. Например, (числитель и знаменатель мы разделили на одно и то же число 3); полученную дробь снова можно сократить, разделив числитель и с знаменатель на 5, т. е.

В общем случае сокращение дроби возможно, если числитель и знаменатель не взаимно простые числа (см. п. 6); если же числитель и знаменатель - взаимно простые числа, то дробь называется несократимой: например, - несократимая дробь. Основная цель сокращения дроби - замена данной дроби равной ей несократимой дробью.

Что отлично справляться с заданиями на умножение и деление дробей, нужно знать, во-первых, об умножении и делении, а во-вторых, знать, что собой представляет дробь.

Дробью мы называем такую форму представления величин, которая отражена с помощью деления, на письме обозначаемого горизонтальной () или косой (/) чертой. Иными словами, число 5 – целое, а вот 4/5 – это дробь . В дроби есть числитель и знаменатель . Числитель – это «верхняя» часть дроби, знаменатель – «нижняя». Любое натуральное число мы можем представить в виде дроби со знаменателем 1 , например: 5 = 5/1.

Произведение двух дробей равно дроби, числитель которой равен произведению их числителей, а знаменатель равен произведению знаменателей.

5/7 ∙ 5/7 = 5 ∙ 5 / 7 ∙ 7 = 25/49.

Мы знаем, что любое натуральное число можно представить в виде дроби со знаменателем 1, поэтому нам не составит труда решить пример

9 ∙ 6/11 = 9/1 ∙ 6/11 = 9 ∙ 6 / 1 ∙ 11 = 54/11 = 4 10/11.

Не забудем и про то, что, чтобы облегчить подсчеты и сократить время, мы можем проводить сокращение дроби.

3/8 ∙ 4/15 = 3 ∙ 4 / 8 ∙ 15. Сократим числитель и знаменатель на 3 и 4, получим в числителе 1 ∙ 1, в знаменателе – 2 ∙ 5, т.е., наш ответ 1/10.

При работе с дробями необходимо знать о взаимно обратных числах. Взаимно обратными называют два числа, произведение которых равно 1. Например, числа 8/15 и 15/8 взаимно обратные. Докажем это, применяя полученные знания об умножении и сокращении дробей.

  1. 8/15 ∙ 15/8 = 8 ∙ 15 / 15 ∙ 8
  2. Сокращаем получившуюся дробь на 8 и 15, получаем 1 ∙ 1 / 1 ∙ 1.
  3. Итак, 1/1 = 1, что и требовалось доказать.

Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю , например,

12/5: 16/5 = 12/5 ∙ 5/16 = 12 ∙ 5 / 5 ∙ 16 = 12 ∙1 / 1 ∙ 16 = 3 ∙ 1 / 1 ∙ 4 = 3/4.

Результат деления дроби, как и при делении целых чисел, называется частным .

Еще одним важным понятием при изучении умножения и деления дробей является понятие пропорция . Пропорцией называют равенство двух отношений. В свою очередь, отношение выведем так:

5: 2 = 500: 200, частное 5 и 2 и называется отношением .

Буквенно пропорцию можно представить следующим образом:

а: b = c: d (говорим «а относится к b, как c относится к d»), или а/b = c/d.

В данной пропорции числа а и d называются крайними членами (в нашей первой записи они располагаются с обоих краев), а b и c средними (они находятся в «серединке»).

Для пропорции характерно следующее утверждение: если пропорция истинна, то произведение ее крайних членов равно произведению средних. Это основное свойство пропорции.

Применим полученные знания на практике.

1. Найдем значение выражения 2 1/3: 2 2/3 ∙ 1 3/5.

a) Представим смешанную дробь в более обычном виде: 7/3: 8/3 ∙ 8/3.

b) Проведем умножение и деление (при делении дробь-делитель заменим на дробь, ей противоположную): 7/3 ∙ 3/8 ∙ 8/3.

c) Отметим, что 3/8 и 8/3 – взаимно обратные дроби и их произведение равно 1, т.е. 7/3 ∙ 1 = 7/3, т.е. 2 1/3.

Если же мы не отметили это вовремя, то можем сократить дробь: 7/3 ∙ 3/8 ∙ 8/3 = 7 ∙ 3 ∙ 8 / 3 ∙ 8 ∙ 3 = 7/3, т.е. 2 1/3.

2. Сократим дробь 2а + 3а / 6а + а.

a) В числителе и знаменателе вынесем общий множитель (это а) за скобки: а(2 + 3) / а(6 + 1).

b) Сократим полученную дробь на а и выполним сложение: 5/7.

!!! дробь можно было сократить и иным способом; сначала выполнить сложение, а после дробь сократить: 5а/7а = 5/7.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Дроби мы постоянно используем в жизни. Например, когда едим торт с друзьями. Торт можно разделить на 8 равных частей или на 8 долей . Доля – это равная часть от чего-то целого. Четыре друга съели по кусочку торта. Четыре взяли из восьми кусочков можно записать математически в виде обыкновенной дроби \(\frac{4}{8}\), читается дробь “четыре восьмых” или “четыре деленное на восемь”. Обыкновенную дробь еще называют простой дробью .

Дробная черта заменяет деление:
\(4 \div 8 = \frac{4}{8}\)
Это мы записали доли в дробях. В буквенном виде будет так:
\(\bf m \div n = \frac{m}{n}\)

4 – числитель или делимое, находится вверху над дробной чертой и показывает сколько частей или долей из общего было взято.
8 – знаменатель или делитель, находится внизу под дробной чертой и показывает общее количество частей или долей.

Если мы приглядимся внимательно, то увидим, что друзья съели половину торта или одну часть из двух. Запишем в виде обыкновенной дроби \(\frac{1}{2}\), читается “одна вторая”.

Рассмотрим еще пример:
Имеется квадрат. Квадрат разделили на 5 равных частей. Две части закрасили. Запишите дробь для закрашенных частей? Запишите дробь для не закрашенных частей?

Две части закрасили, а всего частей пять, поэтому дробь будет иметь вид \(\frac{2}{5}\), читается дробь “две пятых”.
Три части не закрасили, всего частей пять, поэтому дробь запишем так \(\frac{3}{5}\), читается дробь “три пятых”.

Разделим квадрат на более мелкие квадраты и запишем дроби, для закрашенных и не закрашенных частей.

Закрашенных 6 частей, а всего 25 частей. Получаем дробь \(\frac{6}{25}\) , читается дробь “шесть двадцать пятых”.
Не закрашенных 19 частей, а всего 25 частей. Получаем дробь \(\frac{19}{25}\), читается дробь “девятнадцать двадцать пятых”.

Закрашенных 4 части, а всего 25 частей. Получаем дробь \(\frac{4}{25}\), читается дробь “четыре двадцать пятых”.
Не закрашенных 21 частей, а всего 25 частей. Получаем дробь \(\frac{21}{25}\), читается дробь “двадцать один двадцать пятых”.

Любое натуральное число можно представить в виде дроби . Например:

\(5 = \frac{5}{1}\)
\(\bf m = \frac{m}{1}\)

Любое число делиться на единицу, поэтому это число можно представить в виде дроби.

Вопросы по теме “обыкновенные дроби”:
Что такое доля?
Ответ: доля – это равная часть от чего-то целого.

Что показывает знаменатель?
Ответ: знаменатель показывает на сколько всего частей или долей поделено.

Что показывает числитель?
Ответ: числитель показывает сколько частей или долей было взято.

Дорога составляла 100м. Миша прошел 31м. Запишите дробью выражение сколько прошел Миша?
Ответ:\(\frac{31}{100}\)

Что такое обыкновенная дробь?
Ответ: обыкновенная дробь – это отношение числителя к знаменателю, где числитель меньше знаменателя. Пример, обыкновенных дробей \(\frac{1}{4}, \frac{3}{7}, \frac{5}{13}, \frac{9}{11}…\)

Как перевести натуральное число в обыкновенную дробь?
Ответ: любое число можно записать в виде дроби, например, \(5 = \frac{5}{1}\)

Задача №1:
Купили 2кг 700г дыни. Мише отрезали \(\frac{2}{9}\) дыни. Чему равна масса отрезанного кусочка? Сколько граммов дыни осталось?

Решение:
Переведем килограммы в граммы.
2кг = 2000г
2000г + 700г = 2700г всего весит дыня.

Мише отрезали \(\frac{2}{9}\) дыни. В знаменателе стоит число 9, значит на 9 частей разделили дыню.
2700: 9 =300г масса одного кусочка.
В числители стоит число 2, значит надо Мише дать два кусочка.
300 + 300 = 600г или 300 ⋅ 2 = 600г столько дыни съел Миша.

Чтобы найти какая масса дыни осталась нужно вычесть от общей массы дыни съеденную массу.
2700 — 600 = 2100г осталось дыни.