Предельная температура окружающей среды. Температура воздуха окружающей среды

Факторы, влияющие на работоспособность ЭВМ и

Систем

Электронно-вычислительные машины и системы обычно эксплуатируются в различных условиях, имеющих различную физико-химическую среду и природу. Условия эксплуатации изменяются в очень широких пределах.

Рассмотрим факторы, которые влияют на работоспособность ЭВМ. Они подразделяются на следующие: климатические , механические и радиационные .

Кклиматическимфакторамотносят :

Изменение температуры и влажности окружающей среды;

Тепловой удар;

Увеличение или уменьшение атмосферного давления;

Наличие ветра или движущегося потока пыли, песка;

Присутствие активных веществ в окружающей атмосфере;

Наличие солнечного облучения;

Наличие грибковых образований (плесени), микроорганизмов;

Наличие насекомых и грызунов;

Наличие взрывоопасной и воспламеняющейся атмосферы;

Дождь, брызги;

Присутствие в окружающей среде озона.

Кмеханическимфакторамотносят :

Воздействие вибрации, ударов;

Воздействие линейного ускорения;

Акустический удар;

Наличие невесомости.

Крадиационнымфакторамотносят :

Космическую радиацию;

Ядерную радиацию от реакторов, атомных двигателей;

Облучение потоком гамма – фотонов;

Облучение быстрыми нейтронами, бета – частицами, альфа – частицами, протонами, дейтронами.

Некоторые из этих факторов проявляют себя независимо от остальных, а некоторые факторы – в совместном действии с другими факторами той или иной группы. Например, наличие движущихся потоков песка неизбежно приведет к возникновению вибрации в ЭВМ.

Климатические факторы

Температура окружающей среды

Повышение температуры среды, окружающей ЭВМ и ее узлы, связано с одной стороны – с повышением температуры атмосферы, с другой стороны – с выделением теплоты при работе микроэлектронных компонентов.

Как правило, температура внутри ЭВМ больше наружной и это необходимо учитывать при разработке ее конструкции, ведь понижение температуры связано только с изменением температуры атмосферы.

Для того чтобы ЭВМ была работоспособной, необходимо определить допустимый температурный диапазон. При этом ЭВМ должна сохранять работоспособность во включенном, то есть рабочем состоянии.

Для исключения варианта выхода ЭВМ из строя в процессе хранения и транспортировки (в нерабочем состоянии), её конструкцию выполняют такой, чтобы она выдерживала температуры, несколько больше их допустимого диапазона. Такие температуры называют предельными температурами, они характеризуют тепло и холодопрочность конструкции ЭВМ.

Верхние и нижние значения температуры атмосферы окружающей среды при эксплуатации ЭВМ, а также температуры воздуха или другого газа при ее хранении и транспортировании разделяют по степеням жесткости, таб.1:

Таблица 1

Тепловой удар

Температура является важным и часто лимитирующим фактором среды. Распространение различных видов и численность популяций существенно зависят от температуры. С чем это связано и каковы причины такой зависимости?

Диапазон температур, которые зарегистрированы во Вселенной, равен тысяче градусов, но пределы обитания живых существ на Земле значительно уже: чаще всего от - 200°С до + 100 °С. Большая часть организмов имеет гораздо более узкий диапазон температур, причем наибольший диапазон имеют самые низкоорганизованные существа микроорганизмы, в частности, бактерии. Бактерии обладают способностью жить в условиях, где другие организмы погибают. Так, их обнаруживают в горячих источниках при температуре около 90°С и даже 250 °С, тогда как самые устойчивые насекомые погибают, если температура окружающей среды превышает 50°С. Существование бактерий в широком диапазоне температур обеспечивается их способностью переходить в такие формы, как споры, имеющие прочные клеточные стенки, выдерживающие неблагоприятные условия среды.

Диапазон толерантности у наземных животных в целом больше, чем у водных (не считая микроорганизмов). Изменчивость температуры, временная и пространственная, является мощным экологическим фактором среды. Живые организмы приспосабливаются к различным температурным условиям; одни могут жить при постоянной или относительно постоянной температуре, другие лучше адаптированы к колебаниям температуры.

Воздействие температурного фактора на организмы сводится к его влиянию на скорость обмена веществ. Если исходить из правила Вант-Гоффа для химических реакций, то следует заключить, что повышение температуры вызовет пропорциональное возрастание скорости биохимических процессов обмена веществ. Однако в живых организмах скорость реакций зависит от активности ферментов, которые имеют свои температурные оптимумы. Скорость ферментативных реакций зависит от температуры нелинейно. Учитывая все многообразие ферментативных реакций у живых существ, следует заключить, что ситуация в живых системах существенно отличается от сравнительно простых химических реакций (протекающих в неживых системах).

При анализе взаимосвязей между организмами и температурой окружающей среды все организмы делят на два типа: гомойотермных и пойкилотермных . Такое разделение относится к животному миру; иногда животных подразделяют на теплокровных и холоднокровных .

Гомойотермные организмы имеют постоянную температуру и поддерживают ее, несмотря на изменение температуры в окружающей среде. Напротив, пойкилотермные организмы не тратят энергию на поддержание постоянной температуры тела, и она меняется в зависимости от температуры окружающей среды.



Такое разделение имеет несколько условный характер, так как многие организмы не являются абсолютно пойкилотермными или гомойотермными. Многие пресмыкающиеся, рыбы и насекомые (пчелы, бабочки, стрекозы) могут в течение определенного времени регулировать температуру тела, а млекопитающие при необычно низких температурах ослабляют или приостанавливают эндотермическую регуляцию температуры тела. Так, даже у таких "классических" гомойотермных животных, как млекопитающие, во время зимней спячки температура тела понижается.

Несмотря на известную условность деления всех живущих на Земле организмов на эти две большие группы, оно показывает, что существует два стратегических варианта адаптации к условиям температуры среды. Они сложились в ходе эволюции и существенно отличаются по ряду принципиальных свойств: по уровню и устойчивости температуры тела, по источникам тепловой энергии, по механизмам терморегуляции.

Пойкилотермные животные являются эктотермными, они имеют относительно низкий уровень метаболизма. Температура тела, скорость физиолого-биохимических процессов и общая активность прямо зависят от температуры среды. Адаптации (компенсации) у пойкилотермных организмов происходят на уровне обменных процессов: оптимум активности ферментов соответствует режиму температур.

Стратегия пойкилотермии заключается в том, что организмы не тратят энергию на активную терморегуляцию и обеспечивает устойчивость в интервале средних температур, сохраняющихся достаточно длительное время. При выходе параметров температуры за определенные пределы организмы прекращают свою деятельность. Приспособления к меняющимся температурам у этих животных носят частный характер.

У гомойотермных организмов имеется комплекс приспособлений к меняющимся условиям температуры среды. Температурные адаптации связаны с поддержанием постоянного уровня температуры тела и. сводятся к получению энергии для обеспечения высокого уровня метаболизма. Интенсивность последнего у них на 1 - 2 порядка выше, чем у пойкилотермных. Физиолого-биохимические процессы у них протекают в оптимальных температурных условиях. В основе теплового баланса лежит использование собственной теплопродукции, поэтому их относят к эндотермным организмам. Регулирующую роль в поддержании постоянной температуры тела играет нервная система.

Стратегия гомойотермии связана с большими энергетическими затратами на поддержание постоянной температуры тела. Гомойотермия характерна для высших организмов. К ним относят два класса высших позвоночных животных: птиц и млекопитающих. Эволюция этих групп была направлена на ослабление зависимости от внешних факторов среды путем повышения роли центральных регулирующих механизмов, в частности, нервной системы. Большинство видов живых организмов являются пойкилотермными. Они широко расселены на Земле и занимают многообразные экологические ниши.

Реакция конкретного вида на температуру не постоянна и может изменяться в зависимости от времени воздействия температуры окружающей среды и ряда других условий. Другими словами, организм может приспосабливаться к изменению температурного режима. Если тaкое приспособление регистрируют в лабораторных условиях, то процесс обычно называют акклимацией, если же в природных - акклиматизацией. Однако различие между этими терминами лежит не в месте регистрации реакции, а в ее сути: в первом случае речь идет о так называемой фенотипической, а во втором - генотипической адаптации, т. е. адаптации на генетическом уровне. В том случае, если организм не может приспособиться к изменению температурного режима, он погибает. Причиной гибели организма при высоких температурах является нарушение гомеостаза и интенсивности обмена веществ, денатурация белков и инактивация ферментов, обезвоживание. Необратимые нарушения структуры белков возникают при температуре около 60°С. Именно таков порог "тепловой смерти" у ряда простейших и некоторых низших многоклеточных организмов. Адаптации к изменению температур выражаются у них в образовании таких форм существования, как цисты, споры, семена. У животных "тепловая смерть" наступает раньше, чем происходит денатурация белков, вследствие нарушений деятельности нервной системы и других регуляторных механизмов.

При низких температурах обмен замедляется или даже приостанавливается, происходит образование кристаллов льда внутри клеток, что приводит к их разрушению, повышению внутриклеточной концентрации солей, нарушению осмотического равновесия и денатурации белков. Морозоустойчивые растения выдерживают полное зимнее промерзание благодаря ультраструктурным перестройкам, направленным на обезвоживание клеток. Семена выдерживают температуры, близкие к абсолютному нулю.

Таблица 1 - Максимальная температура поверхности для электрооборудования группы II

Номинальные значения климатических факторов внешней среды по ГОСТ J5150 и ГОСТ 15543.1- в соответствии с установленным видом климатического исполнения.

В общем случае электрооборудование конструируется для применения при температуре окружающей среды от минус 20 до плюс 40 °С.

Если электрооборудование сконструировано для применения в другом диапазоне температур, тогда его рассматривают как специальное, и в технической документации и на табличке электрооборудования должен указываться этот диапазон температур t a или t amb , где t a ,t amb - температура окружающей среды (см. таблицу 2).

Таблица 2 - Температура окружающей среды в условиях эксплуатации и маркировка

5.3 Температура поверхности и температура самовоспламенения

Максимальная температура поверхности не должна быть выше значения наименьшей температуры самовоспламенения данной взрывоопасной среды (атмосферы).

Однако для деталей, общая площадь поверхности которых не превышает 10 см 2 , температура поверхности может превышать значения наименьшей температуры самовоспламенения для данного температурного класса, указанного на электрооборудовании группы II, или соответствующую максимальную температуру поверхности для группы 1, если отсутствует опасность воспламенения от этих деталей при превышении на:

50 o С для температурных классов Т1 – Т3,

25 o С для температурных классов Т4 - Т6 и группы I.

Это условие должно быть подтверждено испытанием аналогичных деталей или самого электрооборудования в представительных испытательных взрывоопасных смесях.

Примечание - При испытаниях может быть использован способ повышения температуры окружающей среды.

Более специфические рекомендации в части температуры поверхности миниатюрных деталей, подобных деталям, используемым в искробезопасных электрических цепях “i”, приведены в стандарте на взрывозащиту вида “искробезопасная электрическая цепь”.

6 Требования к электрооборудованию всех видов

6.1 Взрывозащищенное электрооборудование должно отвечать требованиям настоящего стандарта (кроме скорректированных в стандартах на взрывозащиту конкретных видов) и стандартов на взрывозащиту видов, перечисленных в разделе 1.

Примечание - Если электрооборудование должно выдерживать особо неблагоприятные условия эксплуатации (например, повышенное воздействие влажности, колебания окружающей температуры, воздействие химических агентов, коррозия), эти условия должны сообщаться потребителем изготовителю.

6.2 Оболочки, которые могут быть открыты быстрее, чем требуется время, необходимое:

a) для разряда встроенных конденсаторов напряжением 200 В и выше до значения остаточной энергии:

0,2 мДж для электрооборудования группы I и подгруппы IIА;

0,06 мДж для электрооборудования подгруппы IIB;

0,02 мДж для электрооборудования подгруппы IIC, включая электрооборудование, промаркированное только как группа II,

или в два раза превышающей приведенные уровни энергии, если конденсаторы заряжены до напряжения менее 200 В;

b) для охлаждения встроенных в оболочку нагретых элементов до температуры их поверхностей более низкой, чем температурный класс электрооборудования,

должны снабжаться предупредительной надписью: “Открывать через Y мин после отключения напряжения” (где Y значение требуемой выдержки времени), или в качестве альтернативы должны иметь предупредительную надпись:“Открывать во взрывоопасной среде запрещается”.

6.3 Оболочки изделий должны изготовляться из материалов:

- негорючих или трудногорючих, или стойких к действию пламени согласно ГОСТ 12.1.044. (Это требование не распространяется на стекла смотровых окон, светопропускающие элементы светильников, прокладки, заглушки и уплотнителъные кольца вводных устройств, телефонные аппараты и оболочки переносных приборов с индивидуальным искробезопасным источником питания, оболочки стационарных приборов группы II с питанием от искробезопасной цепи);

- устойчивых к механическому и тепловому воздействию, обусловленному работой электрооборудования в нормальном режиме и нормальных условиях эксплуатации.

6.4 Заливочные массы и уплотнения должны сохранять защитные свойства во всем диапазоне температур, возникающих при нормальных условиях эксплуатации электрооборудования.

6.5 Электроизоляционные материалы, пути утечки и электрические зазоры электрооборудования группы I должны удовлетворять требованиям, предъявляемым к изоляции, путям утечки и электрическим зазорам рудничного электрооборудования.

МКБ-10 T67 Эффекты воздействия высокой температуры и света.

Физиология терморегуляции человека

Для нормального функционирования человеческого организма необходима температура его внутренних органов и крови около 37°С, причем колебания температуры не должны превышать 1,5°С. Работа системы терморегуляции во многом зависит от работы терморецепторов - нервных образований, специфически чувствительных к изменениям температуры окружающей среды.

Терморецепторы у человека расположены главным образом в кожных покровах тела, слизистых оболочках рта, верхних дыхательных путей. Они также имеются в стенках подкожных вен и на слизистых внутренних органов. Больше всего терморецепторов в коже лица, меньше на туловище и еще меньше на ногах. Выделяют "тепловые" и "холодовые" терморецепторы.

Рассмотрим работу "тепловых" терморецеторов. Если температура окружающей среды совместима с жизнью организма, то от терморецепторов по проводящим путям в центральную нервную систему поступает постоянная импульсация, которая влияет на терморегуляцию. При повышении температуры окружающей среды, прямом действии теплового излучения или увеличении теплопродукции организма (мышечная работа) терморегуляция осуществляется с помощью реакций изменения теплоотдачи . Важнейшей ее частью является сосудистая регуляция, состоящая в изменении кровенаполнения кожи и скорости объемного кровотока через кожу путем изменения тонуса ее сосудов. У человека максимальное расширение сосудов кожи от состояния максимального сужения уменьшает общую величину теплоизоляции кожного покрова в среднем в 6 раз. Разные участки кожи по-разному участвуют в терморегуляции. Так, например, от кистей рук может быть отведено до 60% теплопродукции основного обмена, хотя площадь кистей составляет всего около 6% от всей поверхности кожного покрова. При увеличении мышечной работы особое значение приобретают участки кожи над работающими мышцами. Часть крови от них устремляется непосредственно в вены соответствующих участков кожи, что значительно облегчает отдачу тепла от мышц путем конвенции.

Кроме сосудистого компонента в системе терморегуляции большую роль играет потоотделение . Процесс просачивания воды через эпителий и последующего ее испарения носит название неощутимой перспирации и поглощает примерно 20% теплопродукции основного обмена. Неощутимая перспирация не регулируется и мало зависит от температуры окружающей среды. Пот выделяют потовые железы, расположенные в коже. При угрозе перегревания организма симпатическая нервная система стимулирует работу потовых желез, выделяющих при интенсивной работе до 1,5 литра пота в час и более.

Управление всеми реакциями поддержания постоянной температуры тела в разных условиях осуществляется специальными нервными центрами, локализованными в головном мозге. Эти центры получают информацию по проводящим путям от термочувствительных нейронов, располагающихся в различных частях ЦНС, и от периферических терморецепторов.

Предполагают, что система терморегуляции реагирует на изменение суммы температур центральных и периферических точек тела и основным объектом ее регулирования является средняя температура, поддержание которой осуществляется с высокой точностью. У человека в зоне температурного комфорта (28-30°С для обнаженного человека) сосудистая реакция терморегуляции развивается при изменении средней температуры тела всего на 0,1°С или менее. При этом любые условия, затрудняющие теплоотдачу (высокая влажность и неподвижность воздуха) или повышающие теплопродукцию (физическое напряжение, усиленное питание), являются факторами, способствующими перегреванию.

Перегревание организма (гипертермия) - это состояние, характеризующееся нарушением теплового баланса, повышением теплового содержания организма. Основной путь теплоотдачи при гипертермии человека - испарение влаги с поверхности тела и через дыхательные пути. Необходимо отметить, что перегревание не связано с первичным нарушением функции терморегуляции.

Перегревание организма человека наблюдается на производствах с высокой температурой окружающей среды или в условиях, затрудняющих теплоотдачу с поверхности тела, а также в районах с жарким климатом. При высокой температуре окружающей среды перегреванию организма способствуют рост теплопродукции, возникающий при мышечной работе, особенно в непроницаемой для водяных паров одежде, высокая влажность и неподвижность воздуха. В условиях затрудненной теплоотдачи легко перегреваются дети раннего возраста, у которых недостаточно сформирована система терморегуляции, а также взрослые с нарушением функции потоотделения.

Проведенные исследования действия высоких температур на организм человека по характеру изменений теплового обмена, сердечно-сосудистой и дыхательной систем позволили выделить четыре степени перегревания организма (по А.Н. Ажаеву):

I степень (устойчивое приспособление) - температура окружающей среды около 40°С. Теплоотдача осуществляется путем испарения влаги с поверхности тела и из дыхательных путей. Теплоотдача равна тепловой нагрузке и температура тела не повышается. Общее состояние удовлетворительное, жалобы сводятся к ощущению тепла, нередко бывает вялость и сонливость, нежелание работать и двигаться.

II степень (частичное приспособление) - температура окружающей среды около 50°С. Тепловая нагрузка не компенсируется испарением влаги, и в организме происходит накопление тепла. Температура тела может достигать 38,5°С. Систолическое давление повышается на 5-15 мм рт. ст., а диастолическое снижается на 10-20 мм рт. ст. Увеличиваются минутный и систолический объем сердца, легочная вентиляция, количество поглощенного кислорода и выделенной углекислоты. Пульс учащается на 40-60 ударов в минуту. Наблюдается резкая гиперемия кожи, профузное потоотделение. Характерно ощущение жары.

III степень (срыв приспособления) - при воздействии температуры 60°С и выше. Температура тела может достигать 39,5-40°С. Систолическое давление повышается на 20-30 мм рт. ст., а диастолическое снижается на 30-40 мм рт. ст., может прослушиваться эффект "бесконечного тона" (нулевое диастолическое давление). Число сердечных сокращений увеличивается до 160 ударов в минуту, но систолический объем сердца уменьшается. За счет усиления легочной вентиляции увеличивается количество поглощенного кислорода и выделенной углекислоты. Кожа резко гиперемирована. Пот стекает каплями. Больные жалуются на ухудшение самочувствия, ощущение сильной жары, сердцебиение, давление в висках и головную боль. Может возникнуть возбуждение, двигательное беспокойство.

IV степень (отсутствие приспособления) - это, собственно, и есть тепловой удар, когда происходит грубое нарушение деятельности сердечно-сосудистой системы и ЦНС.

Надо отметить, что степень тяжести перегревания организма зависит не только от величины температуры окружающей среды, но и от продолжительности воздействия ее на организм человека.

При высокой температуре окружающей среды развиваются четыре клинических синдрома:
1)тепловые судороги
2)тепловое истощение
3)тепловая травма при напряжении
4)тепловой удар

Каждое из этих состояний можно отдифференцировать на основании различных клинических проявлений, однако между ними есть много общего и эти состояния можно рассматривать как разновидности синдромов одного и того же происхождения.

Симптомокомплекс теплового поражения развивается при высокой тем¬пературе (более 32°С) и при высокой относительной влажности воздуха (более 60%).

Наиболее уязвимы:
люди пожилого возраста
лица, страдающие психи¬ческими заболеваниями
лица, страдающие алкоголизмом
лица, принимающие антипсихотические, мочегонные, антихолинергические препараты
люди, находящиеся в помеще¬ниях с плохой вентиляцией

Особенно много тепловых синдромов развивается в первые дни жары, до того, как наступит акклиматизация.

Акклиматизация

Обычно акклиматизация длится 4-7 дней.

1.Акклиматизация не повышает порога потоотделения , которое является наиболее эффективным естественным спо¬собом борьбы с тепловыми нагрузками и может происходить при незначитель¬ных изменениях, а иногда и при отсутствии изменений температуры срединных отделов организма. До тех пор пока продолжается потоотделение, человек может выдерживать значительное повышение температуры, обеспечивая восста¬новление в организме воды и хлорида натрия, наиболее важных физиологиче¬ских составляющих пота. Основным механизмом задержки солей в жаркую погоду является способность секретировать пот с очень низким содержанием хлорида натрия.

2.Другим способом адаптации организма к высоким температурам является расширение периферических кровеносных сосудов , что способствует рассеиванию тепла.

К другим изменениям относятся:
снижение общего объема циркулирующей крови
уменьшение почечного кровотока
повышение уровня антидиуретического гормона (АДГ) и альдостерона
снижение содержания натрия в моче
увеличение частоты дыхания и частоты сердечных сокращений

Гиперальдостеронизм приводит к потере калия, что может усилиться при возмещении потери натрия без соответствующего воспол¬нения калия. Первоначально отмечают увеличение сердечного выброса, но так как тепловая нагрузка остается, то снижается венозный возврат, что может привести к развитию сердечной недостаточности. Если температура окружающей среды в течение длительного времени превышает температуру тела, то тепло сохраня¬ется и развивается гиперпирексия.

Тепловые судороги

Судороги, возникающие при напряжении мышц в условиях перегрева, так называемые судороги шахтера или судороги кочегара, относят к наиболее доброкачественным тепловым поражениям.

Судороги характеризуются болезненными спазмами в произвольно сокращающихся мышцах, обычно возникающими при напряженной работе. Как правило, этот синдром развивается только у тренированных людей.

Температура внешней среды может не превышать температуру тела, так же как нет необходимости длительного пребывания на солнце. Температура тела не повышается. Судороги в мышцах возникают обычно после профузного потоотделения и могут развиться у нетрени-рованных людей в плотной одежде при повышенной физической нагрузке даже в условиях низкой температуры окружающей среды. При физической работе основная нагрузка падает на мышцы конечностей, поэтому они более подвержены развитию судорог. В межприступном периоде физикальный осмотр не выявляет каких-либо изменений.

В анализах крови обычно отмечают повышение концентрации форменных элементов и уменьшение содержания хлорида натрия. Характерным признаком является снижение экскреции натрия с мочой.

Лечение проводят хлоридом натрия. Почти мгновенное прекращение судорог при введении хлорида натрия и воды позволило предположить, что причиной судорог является уменьшение содержания в организме этих основных электролитов.

Иногда в судороги вовлекаются и мышцы брюшной стенки, что может напоминать картину острого живота. Этим больным могут ошибочно произвести оперативное вмешательство, что часто приводит к крайне неблагоприятным результатам. В таких случаях предварительным введением физиологического раствора можно предотвратить ненужную операцию.

Тепловое истощение

Тепловое истощение (тепловой шок, изнурение) - состояние, возникающее при длительном (в течение многих часов) воздействии высокой температуры окружающей среды.

Тепловое истощение относится к наиболее частым тепловым синдромам. Тепловой шок в одинаковой степени развивается как при физической нагрузке, так и в покое. Начало обычно внезапное, длительность шока короткая.

Он возникает вследствие недостаточности ответной реакции сосудов сердца на экстремально высокую температуру и особенно часто развивается у людей пожилого возраста, принимающих мочегонные препараты.

Также к тепловому истощению может привести чрезмерная потеря жидкости в результате сильного потоотделения, что в свою очередь приводит к утомлению, снижению артериального давления и иногда к коллапсу. Воздействие высокой температуры может вызывать потерю слишком большого количества жидкости с потом, особенно в процессе тяжелого физического труда или физических упражнений. С жидкостями теряются также соли (электролиты), а это усугубляет нарушение кровообращения и функций головного мозга. В результате может развиться тепловое истощение. При этом состояние человека внушает опасения, но редко ведет к тяжелым последствиям.

Симптомы и диагностика

Тепловое истощение (изнурение) вследствие обезвоживания возникает тогда, когда организм теряет много жидкости (с потом, выдыхаемым воздухом и т. д.) без адекватного восполнения.

Дефицит воды, превышающий 2,5% массы тела, вызывает начальные нарушения
при дефиците воды в 5,5-6,5% развиваются выраженные расстройства
дефицит воды в 7-14% приводит к тяжелому состоянию
дефицит воды в 15-25% приводит к смертельному исходу

Предшествовать шоку могут:
слабость
головокружение
головная боль
анорексия
тошнота, рвота
позыв на дефекацию
обморок

При тепловом истощении вследствие обезвоживания у пострадавшего возникает чувство жажды; лицо бледно-серое, губы спекшиеся, глаза запавшие, кожа и слизистые оболочки сухие, кожа теряет эластичность и иногда покрывается просовидной сыпью. Температура тела умеренно повышена (до 37,5-38°С). Выделение мочи снижено или прекращается вовсе. Слюноотделение отсутствует, нарушена артикуляция речи, позднее нарушается глотание. Артериальное давление снижено. В тяжелых случаях наблюдаются выраженные нарушения функции головного мозга - головная боль, звон в ушах, расстройства координации движений, судороги отдельных мышечных групп, парестезии (потеря чувствительности), беспокойство, галлюцинации, потеря сознания. Тепловое истощение (изнурение) вследствие потери солей (натрия, калия, кальция и др.) развивается при обильном потоотделении, рвоте, а также если для утоления жажды используется неподсоленная вода. Проявления нарастают постепенно. Появляются утомляемость, слабость, сонливость, головные боли, головокружение. Жажда не выражена. Кожа бледная, влажная, без потери эластичности, слизистые оболочки тоже влажные. Отделение мочи не нарушено или несколько снижено. Часто отмечается тошнота, реже - рвота; плохо переносится питье воды. Температура тела нормальная или несколько повышена. Характерны частый пульс, снижение артериального давления и резко выраженные ортостатические расстройства: при переходе в вертикальное положение, подъеме головы нередко развивается обморок или коллапс. В тяжелых случаях возможны судороги и потеря сознания.

Тепловое истощение легко диагностировать на основании указанных симптомов.

Во время острой стадии кожа больного приобретает пепельно-серый цвет, становится холодной и влажной на ощупь, зрачки расширены. Артериальное давление может быть низким при повышенном пульсовом давлении. Так как крайняя слабость разви¬вается очень быстро, температура тела остается нормальной или даже несколько снижается. Длительность тепловой нагрузки и объем потерянной с потом жид¬кости определяют выраженность гемоконцентрации.

Лечение

Больного переносят в прохладное помещение и устраивают в положении лежа. Обычно происходит спонтанное восстановление сознания.

Лечение сводится, главным образом, к восполнению потери жидкости и солей. При тепловом изнурении вследствие потери жидкости проводят умеренное охлаждение пострадавшего (холодные примочки на голову, обертывание влажной простыней, перемещение в кондиционированное помещение и т. п.). Тем, кто в состоянии пить, назначают обильное питье - 1-2 л в течение 15 минут, затем глотками. В течение часа количество жидкости (воды, холодного чая, фруктовых соков) может достигать 3-5 л, за сутки - 6-8 л. Если пострадавший не может самостоятельно пить, то жидкость (5% раствор глюкозы) вводят внутривенно, подкожно или в клизме (1-1,5 л). После восстановления способности пить устанавливается свободный водный режим, а принудительное введение жидкости необходимо прекратить, поскольку это может привести к водному отравлению (отвращение к воде, боли в животе, затруднение дыхания и пр.).

Пострадавшего с тепловым изнурением вследствие потери солей следует уложить так, чтобы ноги были в приподнятом положении. Если человек в состоянии пить и у него не возникает рвота, ему дают внутрь подсоленную воду или, предпочтительнее, раствор следующего состава: 1,17 г хлорида натрия (поваренной соли), 0,84 г гидрокарбоната натрия (питьевой соды) и 0,3 г хлорида калия на 1 л воды. Если питье невозможно, то вводятся солевые растворы типа Рингер, Батлер, лактасол и др.

При падении артериального давления при всех формах теплового истощения наряду с восполнением потери жидкости вводятся препараты, стимулирующие сосудистый тонус, например сульфокамфокаин, мезатон и др. Для устранения судорог применяют препараты типа сибазон, реланиум и др. Больные с тяжелыми формами теплового истощения после оказания помощи подлежат госпитализации.

Тепловая травма при напряжении

Этот синдром возникает при значительном физическом напряжении в условиях высокой температуры окружающей среды (около 26,7°С) при повышенной относительной влажности воздуха. Наиболее часто этот синдром развивается у бегунов, участвующих в соревнованиях без соответствующей акклиматизации, в неадекватных условиях или при неправильной гидратации до и во время забега.

Предрасполагающими факторами являются:
ожирение
возраст
наличие тепловых ударов в анамнезе

В отличие от классического теплового удара при тепловой травме от напряжения отмечаются обильное потоотделение и более низкая температура тела (39-40°С по сравнению с 41,4°С и выше при тепловом ударе).

Клинически это проявляется головной болью, пилоэрекцией («гусиной кожей») в обла¬сти грудной клетки и верхнего плечевого пояса, ознобом, учащением дыхания, тошнотой, рвотой, судорогами в мышцах, атаксией, шаткостью походки, бессвяз¬ностью речи, в некоторых случаях возможна потеря сознания.

При осмотре выявляют тахикардию, гипотензию, снижение периферического сопротивления.

Данные лабораторных исследований свидетельствуют о гемоконцентрации, гипернатриемии, изменениях печеночных и мышечных ферментов, гипокальциемии, гипофосфатемии и, в некоторых случаях, гипогликемии. Иногда возникают тромбоцитопения, гемолиз, диссеминированное внутрисосудистое свертывание, рабдомиолиз, миоглобинурия и острый тубулярный некроз.

Обширное повреждение эндотелия сосудов, какого-либо из внутренних органов может приводить к его недостаточности. Этих серьезных осложнений можно избежать, назначив пра¬вильное лечение, заключающееся в обертывании больного мокрой прохладной простыней для снижения температуры срединных отделов организма до 38°С, массаже конечностей для улучшения оттока крови от центра к периферии, а также введении жидкостей, содержащих гипотонический раствор глюкозы и соли. Больных следует госпитализировать и наблюдать в течение 36 ч.

Тепловую травму при напряжении можно предотвратить следующими способами:
бегать в утренние часы (до 8 ч утра), когда температура и влажность воздуха не высоки
обеспечить адекватную гидратацию спортсмена перед началом забега, для чего следует выпивать 300 мл воды за 10 мин до старта и по 250 мл каждые 3-4 км (следует избегать приема соленых или сладких жидко¬стей)
организовывать пункты по оказанию первой помощи через каждые 5 км трассы
предупреждать бегунов, чтобы они не увеличивали темп бега после того, как пройдут большую часть трассы
избегать употребления алкоголя незадолго до забега

Тепловой удар

Тепловая гиперпирексия , тепловой удар или солнечный удар наиболее часто возникает у пожилых людей с хроническими заболеваниями, такими как атеросклероз и застойная сердечная недостаточность, особенно у больных, получающих диуретики.
Другими предрасполагающими факторами являются сахарный диабет, алкоголизм, применение антихолинергических препаратов, поражения кожи, затрудняющие теплоотдачу, например эктодермальная дисплазия, врожденное отсутствие потовых желез, выраженная склеродермия.

Тепловой удар часто развивается у воинов-новобранцев во время первых тренировок, иногда у бегунов на длинные дистанции.

Механизм развития теплового удара не известен. У большинства больных прекращается потоотделение, однако у некоторых оно сохраняется. Сужение сосудов, возникающее при тепловом ударе, предотвращает охлаждение срединных отделов организма, однако не ясно, является ли оно причиной или результатом. Пребывание на солнце не является обязательным условием развития теплового удара.

Продормальный период может проявляться несколькими симптомами. Иногда первым признаком является потеря сознания. Кроме того, возникают головная боль, головокружение, обморок, желудочно-кишечные расстройства, спутанность сознания, учащение дыхания. В наиболее тяжелых случаях может развиться делириозное состояние.

При осмотре обращает на себя внимание гиперемия и выраженная общая слабость. Ректальная температура обычно превышает 41,1°С, а внутренняя тем¬пература организма составляет 44,4°С. Кожа горячая и сухая на ощупь, пото¬отделение в большинстве случаев отсутствует. Число сердечных сокращений по¬вышено, дыхание учащенное, поверхностное, артериальное давление обычно низ¬кое. Мышцы дряблые, сухожильные рефлексы могут быть снижены. В зависимо¬сти от тяжести состояния отмечают сонливость, ступор или кому. Летальному исходу предшествует шок.

Различные изменения обнаруживают при исследовании крови и мочи:
Как правило, это гемоконцентрация, лейкоцитоз, протеинурия, цилиндрурия, повышение азота мочевины крови.
Обычно отмечают дыхательный алкалоз с последующим метаболическим ацидозом, молочнокислый ацидоз.
Содержание калия в плазме крови обычно в пределах нормы или несколько понижено, отмечают также гипокальциемию и гипофосфатемию.
Могут возникать также тромбоцитопения, увеличение протромбинового времени, времени свертываемости и кровотечения, афибриногенемия и фибринолиз, диссеминированное внутрисосудистое свертывание.
Все эти факторы могут приводить к диффузному кровотечению. Часто поражается печень. Обычно это происходит в течение 24-36 ч и проявляется желтухой, а также изменениями печеночных ферментов. Частым осложнением теплового удара является почечная недостаточность.

При электрокардиографии выявляют тахикардию, синусовую аритмию, уплощение и последующую инверсию зубца Т, депрессию сегмента ST. В литературе описан диффузный некроз миокарда с признаками инфаркта миокарда на ЭКГ.

Смерть при тепловом ударе , причиной которой является почечная недостаточность и другие осложнения, может наступить в течение нескольких часов. В большинстве случаев, однако, больные умирают через несколько недель после теплового удара вследствие инфаркта миокарда, сердечной недостаточности, почечной недостаточности, бронхопневмонии, бактериемии.

При аутопсии находят обширные повреждения паренхимы различных внутренних органов либо в резуль¬тате гиперпирексии как таковой, либо вследствие петехиальных кровоизлияний в головном мозге, сердце, почках или печени.

Тепловой удар требует немедленного интенсивного лечения. Время имеет огромное значение.

Больного следует уложить в прохладном, хорошо проветриваемом помещении

Снять большую часть одежды.

Так как потоотделение прекращается, следует использовать внешние способы рассеивания тепла.

Больного следует поместить в ванну с ледяной водой - это наиболее эффективное сред-ство.

Ледяная вода не способствует развитию шока или выраженному сужению сосудов кожи.

Данную процедуру следует проводить как можно в более ранние сроки.

Больной должен постоянно находиться под наблюдением врача, необхо¬димо следить за ректальной температурой.

Водные процедуры прекращают при снижении температуры до 38,3°С, однако повторяют при возобновлении фебрилитета.

Другие способы лечения менее эффективны , однако если нет возможности обеспечить ванну, то следует обернуть больного в холодную мокрую простыню и устроить хорошую вентиляцию помещения.

После ванны больного следует по¬местить в прохладную, хорошо проветриваемую комнату. Одновременно с охлаждением необходимо провести массаж кожи, так как это стимулирует отток крови от поверхности тела к перегревшимся внутренним органам и головному мозгу и способствует ускорению теплоотдачи.

Показана гидратация гипотоническими кристаллоидными растворами. Для купирования озноба можно применить фенотиазин. Противопоказаны стимулирующие вещества, такие как эпинефрин и нарко¬тики. Следует поставить мочевой катетер и следить за выделением мочи.
Быстрое охлаждение в ледяной воде, массаж конечностей и мощная гидратация, обеспечение правильной вентиляции, предотвращение аспирации, лечение комы и судорог, предупреждение аритмии - все эти манипуляции приводят к тому, что большинство больных, особенно молодых и здоровых, выживают.

К сожалению, у ослабленных больных и лиц пожилого возраста, у которых тепловой удар диагностируется, как правило, после нескольких часов гиперпирексии, исход бывает менее благоприятным.

Следует опасаться обезвоживания и развития сердечной недостаточности. В случаях кровотечений нужно переливать свежую кровь, а при наличии диссеминированного внутрисосудистого свертывания - вводить гепарин (по 7500 ЕД/ч). Затяжная олигурия является показанием для раннего начала диализа.

Профилактика теплового удара

Определяется в каждом отдельном случае конкретной обстановкой. Например, длительные переходы в жаркий период рекомендуется проводить в более прохладные часы дня в легкой пористой одежде, чаще устраивать привалы в тенистых проветриваемых местах. Необходимо соблюдать правило питьевого режима, благодаря которому можно направленно корригировать водно-солевой обмен в организме. Вместо воды можно употреблять холодный подкисленный или подслащенный чай, рисовый или вишневый отвар, хлебный квас. Рекомендуется более широкое употребление углеводов, молочных продуктов с ограничением продуктов, содержащих кислые радикалы (каши и др.).

Высокая температура окружающей среды вынуждает переносить основной прием пищи на вечерние часы с потреблением на завтрак - 35, на обед - 25, на ужин - 40% суточного рациона.

В горячих цехах устанавливают устройства для охлаждения воздуха путем распыления воды, широко применяют водные процедуры (души, обливания и др.), устанавливают перерывы в работе, ограничивают прием белковой и жирной пищи.

Важное значение в профилактике теплового удара имеет предварительная тренировка, с помощью которой можно добиться повышения адаптации к действию термических факторов.


Широтные и сезонные различия. - Высотные различия и конти- ненталъностъ климата. - Микроклимат. - Глубина.
Описав влияние различных температур на организмы, уместно обсудить вопрос о разнообразии температур, встречаемых в природе. Соответствующие температурные различия вкупе с их последствиями как раз и обусловливают ту роль, которую может играть температура, определяя распространение и численность организмов. Температурные различия можно поделить на семь основных групп: широтные, высотные, связанные с континентальностью климата, сезонные, суточные, микроклиматические и глубинные. Многие основные сведения об этих различиях, разумеется, общеизвестны.

Рис. 2.11. А. Положение Земли на 22 июня: в Северном полушарии начинается лето, а в Южном- зима. В высоких широтах день долог, а в низких - короток. Места, где солнечные лучи падают на земную поверхность под наибольшим углом, находятся севернее экватора. Б. Положение Земли на 22 декабря: наблюдается картина,
противоположная по сравнению с А. В. Положение Земли на 21 марта и 23 сентября: в одном полушарии начинается весна, в другом - осень. Долго- та дня на всех широтах составляет 12 часов. Место отвесного падения солнечных лучей приходится в точности на экватор.
Различия сезонные и широтные в действительности неразделимы. Как показывает рис. 2.11, угол наклона земной оси по отношению к плоскости околосолнечной орбиты Земли в течение годового цикла изменяется. По этой причине можно выделить лишь весьма приблизительные, «обобщенные» температурные зоны, показанные на рис. 2.12; причем необходимо помнить, что самые высокие температуры отмечаются не на экваторе, а в средних широтах: так, например, на территории США едва ли сыщется такое место, где отметка 38 0C никогда не оставалась далеко внизу; вместе с тем ни в Колоне (Панама), ни почти на самом экваторе в Белене (Бразилия) температура никогда не превышала отметки 35 °С (MacArthur, 1972).
На эти крупномасштабные географические закономерности накладываются влияния высоты над уровнем моря и «континен- тальности» климата. В сухом воздухе с подъемом на каждые 100 м температура падает на I0C, а во влажном - на 0,6СС. Падение температуры - следствие «адиабатического» расширения воздуха, происходящего при понижении атмосферного давления, связанном с набором высоты. Проявления континенталь- ности объясняются главным образом различиями между скоростями нагрева и охлаждения суши, с одной стороны, и водных


Рис. 2.12. Упрощенная схема подразделения поверхности Земли на пять основных климатических зон. (Жирным крестом отмечены Канарские о-ва; см. текст, с. 85.)

масс - с другой. Отражающая способность воды выше отражающей способности суши, поэтому суша нагревается быстрее; но и остывает она быстрее. По этой причине море оказывает на температурный режим прибрежных районов и особенно островов смягчающее, «морское» влияние: как суточные, так и сезонные колебания температуры в таких местах заметны гораздо менее, чем в других, расположенных на той же широте, но в глубине континента (рис. 2.13). Нечто подобное наблюдается и внутри массивов суши: местности засушливые и голые (например, пустыни) претерпевают более резкие сезонные и суточные колебания температур, нежели местности более увлажненные (на- пример, леса).
Таким образом, за картой мира с изображенными на ней температурными зонами (рис. 2.12) скрывается множество различий сугубо местного характера. Есть, впрочем, и еще одно, гораздо менее широко осознаваемое обстоятельство, а именно то, что может существовать целый ряд еще более мелкомасштабных различий - микроклиматических. Вот лишь некоторые

Рис. 2.13. Сезонная динамика средней суточной амплитуды температур в различных прибрежных районах и внутри материка. По мере удаления от побережья и ослабления смягчающего влияния моря размах колебаний температуры воздуха возрастает. Гельголанд - остров. Евер, Ольденбург и Ленинген удалены от североморского побережья Зап. Германии соответственно на 11, 30 и 80 км. (По Roth, 1981.)

примеры (Geiger, 1955): в ночное время погружение плотного холодного воздуха на дно горной долины может привести к тому, что там будет на 310C холоднее, чем на краю долины вссго лишь в 100 м выше; морозным зимним днем солнечные лучи могут нагреть обращенную к югу сторону ствола дерева (а заодно и кем-то заселенные расселины и трещины на ней) до целых 30°С; на участке, покрытом растительностью, температуры воздуха в точках, разделенных вертикальным расстоянием р 2,6 м (на поверхности почвы и непосредственно над верхним ярусом листвы), могут различаться на 10°С. Стало быть, для получения данных о влиянии температуры на распространение и численность живых существ вовсе не следует ограничиваться рассмотрением закономерностей, проявляющихся в глобальном или географическом масштабе.
Это становится очевидным и при изучении зависимости температуры от глубины (под поверхностью почвы или воды). Зависимость эта выражается двояким образом: во-первых, колебания температуры, имеющие место на поверхности, на глубине ослабляются («заглушаются», демпфируются) и, во-вторых, они сдвигаются назад по фазе; этот сдвиг тем заметнее, чем сильнее демпфирование. Степень выраженности обоих этих явлений возрастает как с увеличением самой по себе глубины, так и с понижением теплопроводности среды (у почвы она очень низка, у воды-несколько выше). Примерно на метровой глубине под поверхностью почвы суточные колебания температуры с амплитудой в несколько десятков градусов практически неощутимы, а на глубине нескольких метров исчезают даже годовые колебания.