От чего зависит активность ферментов? Скорость ферментативной реакции. Факторы, влияющие на ферментативную активность Зависимость скорости ферментативной реакции от температуры

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

Рис. 1.

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k" - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата , неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3.

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4.

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К" - константа ассоциации; n - число субстрат связывающих центров.

Ферментативная кинетика изучает скорость реакций, катализируемых ферментами в зависимости от различных условий (концентрации, температуры, pH и др.) их взаимодействия с субстратом.

Однако ферменты - это белки, чувствительные к влиянию различных внешних воздействий. Поэтому при изучении скорости ферментативных реакций учитывают, главным образом, концентрации реагирующих веществ, а влияние температуры, pH среды, активаторов, ингибиторов и прочих факторов стараются свести к минимуму и создают стандартные условия. Во-первых, это оптимальное для данного фермента значение pH среды. Во-вторых, рекомендуется придерживаться температуры 25°С, в тех случаях, где это возможно. В-третьих, достигают полного насыщения фермента субстратом. Этот момент особенно важен, поскольку при низкой концентрации субстрата не все молекулы фермента участуют в реакции (рис. 6.5, а ), значит и результат будет далек от максимально возможного. Наибольшая мощность катализируемой реакции, при прочих равных условиях, достигается, если каждая молекула фермента участвует в превращении, т.е. при высокой концентрации фермент-субстратного комплекса (рис. 6.5, в). Если же концентрация субстрата не обеспечивает полного насыщения фермента (рис. 6.5, б ), то скорость протекающей реакции не достигает максимального значения.

Рис. 65.

а - при низкой концентрации субстрата; 6 - при недостаточной концентрации субстрата; в - при полном насыщении фермента субстратом

Скорость ферментативной реакции, измеренной при соблюдении перечисленных условий, и полном насыщении фермента субстратом называют максимальной скоростью ферментативной реакции (V).

Скорость ферментативной реакции, определяемая при неполном насыщении фермента субстратом, обозначается v.

Ферментативный катализ упрощенно можно описать схемой

где F - фермент; S - субстрат; FS - фермент-субстратный комплекс.

Каждая стадия этого процесса характеризуется определенной скоростью. Единицей измерения скорости ферментативной реакции служит количество молей субстрата, превращаемое в единицу времени (как и скорость обычной реакции).

Взаимодействие фермента с субстратом приводит к образованию фермент-субстратного комплекса, но этот процесс обратимый. Скорости прямой и обратной реакций зависят от концентраций реагирующих веществ и описываются соответствующими уравнениями:

В состоянии равновесия справедливо уравнение (6.3), поскольку скорости прямой и обратной реакции равны.

Подставив значения скорости прямой (6.1) и обратной (6.2) реакции в уравнение (6.3), получим равенство:

Состояние равновесия характеризуется соответствующей константой равновесия К р, равной отношению констант прямой и обратной реакций (6.5). Величина, обратная константе равновесия, называется субстратной константой K s , или константой диссоциации фермент-субстратного комплекса:


Из уравнения (6.6) ясно, что субстратная константа уменьшается при высокой концентрации фермент-субстратного комплекса, т.е. при большой его устойчивости. Следовательно, субстратная константа характеризует сродство фермента и субстрата и соотношение констант скоростей образования и диссоциации фермент-субстратного комплекса.

Явление насыщения фермента субстратом изучали Леонор Михаэлис и Мод Мептен. На основе математической обработки результатов ими было выведено уравнение (6.7), получившее их имена, из которого ясно, что при высокой концентрации субстрата и низком значении субстратной константы скорость ферментативной реакции стремится к максимальной. Однако это уравнение носит ограниченный характер, поскольку учитывает не все параметры:

Фермент-субстратный комплекс в процессе реакции может подвергаться превращениям в разных направлениях:

  • диссоциировать на исходные вещества;
  • превращаться в продукт, от которого отделяется фермент в неизменном виде.

Поэтому для описания суммарного действия ферментативного процесса введено понятие константы Михаэлиса К т, которая выражает взаимосвязь констант скоростей всех трех реакций ферментативного катализа (6.8). Если оба слагаемых разделить на константу скорости реакции образования фермент-субстратного комплекса, то получится выражение (6.9):


Из уравнения (6.9) вытекает важное следствие: константа Михаэлиса всегда больше субстратной константы на величину k 2 /k v

Численно К т равна такой концентрация субстрата, при которой скорость реакции составляет половину максимально возможной скорости и соответствует такому насыщению фермента субстратом, как на рис. 6.5, б. Поскольку на практике не всегда удается достичь полного насыщения фермента субстратом, то именно К т используется для сравнительной характеристики кинетических характеристик ферментов.

Скорость ферментативной реакции при неполном насыщении фермента субстратом (6.10) зависит от концентрации фермент-субстратного комплекса. Коэффициентом пропорциональности служит константа реакции освобождения фермента и продукта, поскольку при этом меняется концентрация фермент-субстратного комплекса:

После преобразований, с учетом представленных выше зависимостей, скорость ферментативной реакции при неполном насыщении фермента субстратом описывается уравнением (6.11), т.е. зависит от концентраций фермента, субстрата и их сродства K s:

Графическая зависимость скорости ферментативной реакции от концентрации субстрата не является линейной. Как очевидно из рис. 6.6, с увеличением концентрации субстрата наблюдается рост активности фермента. Однако при достижении максимального насыщения фермента субстратом скорость ферментативной реакции становится максимальной. Следовательно, фактором, ограничивающим скорость реакции, является образование фермент-субстратного комплекса.

Практика показала, что концентрации субстратов, как правило, выражаются значениями намного меньше единицы (10 6 -10 3 моль). Оперировать такими величинами в расчетах довольно сложно. Поэтому Г. Лайнуивер и Д. Берк предложили выражать графическую зависимость скорости ферментативной реакции не в прямых координатах, а в обратных. Они исходили из предположения, что для равных величин равны и обратные им значения:

Рис. 6.6.

После преобразования выражения (6.13) получается выражение, называемое уравнением Лайнуивера - Бэрка (6.14):

Графическая зависимость уравнения Лайнуивера- Берка носит линейный характер (рис. 6.7). Кинетические характеристики фермента определяются следующим образом:

  • отрезок, отсекаемый на оси ординат, равен 1/V;
  • отрезок, отсекаемый на оси абсцисс, равен -1 /К т.

Рис. 6.7.

Считается, что метод Лайнуивера - Берка позволяет более точно, чем в прямых координатах, определить максимальную скорость реакции. Из этого графика можно также извлечь ценную информацию, касающуюся ингибирования фермента.

Существуют и другие способы преобразования уравнения Михаэлиса- Ментен. Графические зависимости используют при изучении влияния различных внешних воздействий на ферментативный процесс.

При t=36-38 0 ферменты обладают наибольшей активностью. Эта температура называется температурный оптимум:

С повышением t 0 до оптимума активность ферментов повышается.

Высокие t вызывают денатурацию ферментов.

Низкие t снижают активность ферментов.

Изменение t 0 приводит к нарушению связей, закрепляющих белковую структуру ферментов (третичную, четвертичную), т.е. вызывает денатурацию.

Обратимая денатурация наблюдается при понижении t 0 . Это позволяет хранить ферменты, биологические жидкости, кровь.

Повышение температуры необратимо нарушает белковую структуру фермента. Это свойство используется при стерилизации материалов, инструментов.

Лихорадка – защитное свойство организма, т.к. происходит денатурация ферментов микроорганизмов и поэтому нецелесообразно применять жаропонижающие средства.

Зависимость скорости реакции от рН

На графике эта зависимость имеет вид колокола. На вершине кривой есть точка оптимума рН, где фермент имеет наибольшую активность. рН оказывает воздействие на степень ионизации кислотных и основных групп. При различных значениях рН активный центр может находиться в частично ионизированной или неионизированной форме, что оказывает влияние на третичную структуру активного центра и на формирование фермент-субстратного комплекса.

Влияние рН.

Ферменты, как и все белки содержат много зараженных положительно и отрицательно групп (-NH 2 ,-COOH), которые входят в состав аминокислот арг, лиз, асп, глу. Общий заряд зависит от соотношения между этими группами. Заряд белка-фермента изменяется в зависимости от концентрации в клетке ионов водорода, которые нейтрализуют (подавляют диссоциацию) карбоксильной группы:

и образуют положительно заряженные группы:

Таким образом увеличение положительного заряда или уменьшение отрицательного заряда на поверхности фермента обусловлено повышением концентрации ионов водорода.

Состояние белковой молекулы, при котором суммарный заряд белка равен 0, называется изоэлектрическим состоянием.

Значение рН, при котором заряд белковой молекулы равен 0, называется изоэлектрической точкой (ИЭТ).

Большинство ферментов отличаются наибольшей активностью и стабильностью в области изоэлектрической точки.

Резкие колебания рН способствуют денатурации белка, т.е. уменьшению ферментативной активности.

Значение рН, при котором фермент проявляет максимальную активность, называется оптимумом рН, который характерен для данного фермента, реагирующего с определенным субстратом.

Внутриклеточные ферменты обычно имеют оптимум рН соответствующий нейтральной среде (рН =7) близкой к нормальному значению рН для жидкостей организма. Есть ферменты оптимум рН которых находится в сильнокислой и сильнощелочной среде

Классификация ферментов.

Выделяют шесть классов ферментов:

1. Гидролазы – ферменты, расщепляющие субстрат при участии молекул воды.

2. Лиазы – ферменты, расщепляющие молекулы субстрата без участия воды, при этом часто образуются низкомолекулярные продукты – СО 2 , NH 3 , Н 2 О.

3. Изомеразы – ферменты, вызывающие в молекуле изомерные превращения.

4. Феразы (трансферазы) – ферменты, переносящие группы от одной молекулы на другую или из одного положения в другое в пределах одной молекулы.

5. Оксидоредуктазы - ферменты, катализирующие перенос протонов и электронов (т.е.окислительно-восстановительные реакции).

6. Лигазы(синтетазы) – ферменты, катализирующие синтез крупных молекул из более мелких.

Номенклатура ферментов.

Рабочее название фермента складывается из названия субстрата, типа катализируемой реакции и окончания –аза.

Систематическое название складывается из названия субстратов, названия типа катализируемого химического превращения и окончания –аза.

Название класса указывает на тип химической реакции, катализируемой ферментами. Классы делятся на подклассы – уточняет действие фермента, так как указывает на природу химической группы субстрата, атакуемой ферментом. Подкласс делится на подподклассы. Подподклассы конкретизируют действие фермента, уточняя природу атакуемой связи субстрата или природу акцептора.

I. Оксидоредуктазы катализируют окислительно-восстановительные реакции. Оксидоредуктазы называют также дегидрогеназами или редуктазами. Оксидоредуктазы переносят протоны и электроны. Оксидоредуктазы делят на подклассы:

1. Аэробные дегидрогеназы – переносят протоны и электроны на кислород.

Коферментами оксидоредуктаз являются:

НАД – никотинамидадениндинуклеотид – содержит витамин В 5 – никотинамид.

НАДФ – никотинамидадениндинуклеотид фосфат, содержит витамин В 5 .

ФАД – флавинадениндинуклеотид, содержит витамин В 2 – рибофлавин.

ФМН – флавинмононуклеотид, содержит витамин В 2 – рибофлавин.

Оксидоредуктазы катализируют реакции дегидрирования, т.е. отщепление водорода.

Оксидоредуктазы окисляют следующие функциональные группы:

ОН, -С=О, -NH 2

Коферменты дегидрогеназ присоединяют протоны и электроны.

НАД-зависимые дегидрогенизы окисляют следующие функциональные группы: спиртовый гидроксил (ОН), альдегидную группу (СОН), аминогруппу (NH 2).

НАД-зависимые дегидрогеназы катализируют следующие типы реакций:

1. Дегидрирование гидроксильных групп

| лактатдегидрогеназа |

COOH НАД + НАДН +Н + СН 3

Лактат пируват

Молочная кислота

2. Дегидрирование альдегидных групп (дегидрирование глицеральдегид – 3 – фосфата)

| + НАД + + Н 3 РО 4 | + НАДН + Н +

CH 2 OPO 3 H 2 CH 2 OPO 3 H 2

Глицеральдегид-3-фосфат 1,3-бифосфоглицериновая кислота

3. Дегидрирование аминогрупп

СООН СООН

СН 2 +НАД СН 2

| | + НАДН + Н +

СН 2 глутаматдегидрогеназа СН 2

Глутаминовая кислота

ФАД – зависимые дегидрогеназы окисляют (дегидрируют) следующие функциональные группы: отщепление водорода от групп –СН 2 - СН 2 - с образованием двойной связи.

СООН СООН

| ФАД ФАДН 2 |

СН 2 сукцинатдегидрогеназа СН

СООН СООН

Сукцинат фумарат

2. Анаэробные дегидрогеназы переносят протоны и электроны не на кислород, а на какой-то другой субстрат. Эти ферменты называют также оксигеназами.

II. Трансферазы – ферменты, катализирующие реакции переноса различных групп от одного субстрата к другому.

Подклассы трансфераз:

1. Аминотрансферазы осуществляют перенос аминогруппы с аминокислоты на кетокислоту. Катализируют реакцию трансаминирования.

2. Метилтрансферазы катализируют перенос метильных групп (СН 3 -).

3. Фосфотрансферазы катализируют перенос остатка фосфорной кислоты. В подкласс фосфотрансфераз входят киназы, которые используют АТФ в качестве донора фосфатного остатка.

III. Лиазы – ферменты, катализирующие разрыв С-О, С-С, С-N и других связей, а также обратимые реакции отщепления различных групп, без участия воды.

1. Карбоксилазы – присоединение карбоксильной группы (СО 2).

2. Дегидратазы – отнятие молекулы воды от субстрата.

3. Альдолазы – расщепляют связь С-С.

4. Гидратазы – ферменты воды по двойной связи.

IV. Изомеразы – ферменты, катализирующие превращение в пределах одной молекулы.

Катализируют реакции изомеризации. Подклассы: мутазы, таутомеразы, рацемазы, эпимеразы, изомеразы.

V. Гидралазы – ферменты, катализирующие разрыв связей в присутствии воды.

VI. Лигазы (синтетазы) – ферменты, катализирующие соединение двух молекул с использованием энергии фосфатной связи АТФ.

Влияние низкомолекулярных веществ на активность фенрментов.

Низкомолекулярные вещества, изменяющие скорость ферментативных реакций делят на 2 группы:

1. Активаторы – ускоряющие протекание ферментативной реакции.

2. Ингибиторы – замедляют протекание ферментативных реакций.

Активаторы делят на 2 группы:

1. В качестве активатора могут выступать коферменты или простетическая группа (в основном витамины).

Для этой группы характерны те же закономерности, что описаны для взаимодействия фермента и субстрата F+S и A+Ko подчиняются одним закономерностям

K m определяет сколько вводить Ko.

2. Активаторы, являющиеся связующим звеном между F и S (ориентирование фермента и субстрата) и обеспечивающим взаимодействие фермента и субстрата (F A S), взаимодействие апофермента и кофактора Апоф А Ко

Часто это ионы Ме – Со, Mn, Mg, Zn.

Значение ингибирования активности ферментов.

1. Ингибирование лежит в основе действия лекарственных веществ и токсических агентов.

2. Ингибирование – один из подходов к изучению ферментативного действия (например, структуры активного центра).

Ингибирование бывает 2-х видов:

1. Необратимое

2. Обратимое

Необратимое ингибирование имеет место тогда, когда присоединение ингибитора к ферменту носит необратимый характер.

Например: это действие алкилирующих агентов (подацетамид) необратимо действующих на тиогруппу ферментов. Необратимость связана с тем, что равновесие смещено вправо, в сторону образования ковалентного производного фермента:

F-S-H + J-CH 2 CONH 2 F-S-CH 2 -CONH 2 + HJ

Необратимым является действие токстческих фосфоорганических соединений, которые называют нервно-паралитическими ядами, они ингибируют ацетилхолинэстеразу, участвующую в передаче нервных импульсов.

Необратимое ингибирование

Многие ингибиторы необратимо связываются с Е или ES, и, поскольку это влияет на V max , такое ингибирование относят к неконкурентному.

Ингибиторы этого типа часто ковалентно связываются с ферментом или с комплексом фермент-субстрат, необратимо изменяя нативную конфигурацию. Это объясняет токсическое действие Hg 2+ , Pb 2+ и соединений мышьяка.

На необратимом ингибировании основано действие пенициллина. Пенициллин ингибирует действие одного из ферментов, участвующих в сборке клеточной стенки бактерий. Клетки, ен имеющие клеточной стенки, легко лизируются.

Действие аспирина основано на ковалентной модификации фермента. Аспирин снижает скорость синтеза простагландинов, выступая в роли ингибитора циклооксигеназного компонента эндопероксид-синтетазы. Считается, что возникновение болей, воспалений, температуры связано с простагландинами.

При интоксикации связывание яда или его вытеснение из комплекса фермент-ингибитор возможно с помощью реактиваторов, или противоядий. К ним относятся все SH – содержащие комплексоны (цистеин, димеркаптопропанол), лимонная кислота.

Обратимое ингибирование бывает 2-х видов:

1. Конкурентное

2. Неконкурентное

Обратимое конкурентное ингибирование – активность фермента восстанавливается после удаления ингибитора путем увеличения концентрации субстрата.

Отличительный признак конкурентного ингибитора – конкурентный ингибитор по структуре близок субстрату. Конкурентный ингибитор конкурирует с субстратом за активный центр фермента.

Пример: сукцинатдегидрогеназа катализирует превращение сукцината в фумарат. Конкурентным ингибитором сукцинатдегидрогеназы является малоновая кислота, которая содержит на одну группу СН 2 меньше, чем сукцинат.

СООН СООН COOH

СН 2 СН CH 2

СН 2 СН COOH

| | малоновая кислота

СООН СООН

Сукцинат и малоновая кислота являются структурными аналогами и конкурируют за активный центр фермента. (Это является подтверждением тому, что активный центр не является жестким образованием, подходящим субстрату, как «ключ-замок».)

При конкурентном ингибировании степень ингибирования фермента не зависит от абсолютной концентрации ингибитора, а от соотношения ингибитора и субстрата, если это соотношение J:S=1:50, то активность фермента ингибируется на 50%.

Действие конкурентного ингибитора снимается повышением концентрации субстрата, так как сродство фермента и субстрата выше, чем сродство фермента и ингибитора.

Кm F и S и Km F и J различны и это узнают путем построения графиков Михаэлиса-Ментен и Лайнуэвера-Бэрка

V max – одинакова

K m с ингибитором увеличивается.

Действие многих химиотерапевтических средств основано на конкурентном ингибировании. Например, сулфаниламидные препараты, используемые для лечения болезней, вызываемых микробными инфекциями. Сульфаниламидные препараты по структуре сходны с п-аминобензойной кислотой. ПАБК является предшественником в микробиологическом синтезе фолиевой кислоты, из которой кофермент, необходимый для синтеза нуклииновых кислот микроорганизмов. При введении сульфаниламидных препаратов наблюдается угнетение фермента и гибель микроорганизмов.

На конкурентном ингибировании основано применение и фторурацила, который используется при лечения рака.

Неконкурентное, обратимое ингибирование.

Действие неконкурентного ингибитора не может быть устранено увеличением концентрации субстрата.

Неконкурентный ингибитор не связывается с активным центром, он может связываться со свободным ферментом , либо с комплексом FS , либо с тем и другим, но обе формы JF и JFS – не активны.

K m - не изменяется, т.к. нет связывания с активным центром.

V max – уменьшается.

Наиболее общий тип неконкурентного ингибирования имеет место при действии реагентов, обратимо связывающих SH-группы цис, входящего в каталитический центр или близко от него. Это ионы Cu 2+ , Hg 2+ , Ag + и их производные с образованием меркаптидов:

Ферменты, для активации которых необходимы ионы Ме ингибируются по такому способу агентами связывающими эти ионы:

ферро или ферроцианид.

Регуляция активности ферментов.

Использование ферментов в фармации, медицине.

Виды регуляции активности ферментов:

1. Аллостерическая модификация.

2. Активация зимогенов.

3. Регуляция путем химической модификации.

Конец работы -

Эта тема принадлежит разделу:

Структура, свойства и функции белков

Выяснение структуры белков является одной из главных проблем современной биохимии.. Белковые молекулы представляют собой высокомолекулярные соединения.. Большинство белков имеют уровня организации структуры белковой молекулы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Ферментативная кинетика изучает влияние различных факторов (концентрация S и E, рН, температура, давление, ингибиторы и активаторы) на скорость ферментативных реакций. Главной целью изучения кинетики ферментативных реакций является получение информации, позволяющей глубже понять механизм действия ферментов.

Кинетическая кривая позволяет определить начальную скорость реакции V 0 .

Кривая субстратного насыщения.

Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от температуры.

Зависимость скорости реакции от рН.

Оптимум рН действия большинства ферментов лежит в пределах физиологических значений 6,0-8,0. Пепсин активен при рН 1,5-2,0, что соответствует кислотности желудочного сока. Аргиназа, специфичный фермент печени, активен при 10,0. Влияние рН среды на скорость ферментативной реакции связывают с состоянием и степенью ионизации ионогенных групп в молекуле фермента и субстрата. Этот фактор определяет конформацию белка, состояние активного центра и субстрата, формирование фермент-субстратного комплекса, собственно процесс катализа.

Математическое описание кривой субстратного насыщения, константа Михаэлиса .

Уравнение, описывающее кривую субстратного насыщения, было предложено Михаэлисом и Ментон и носит их имена (уравнение Михаэлиса-Ментен):

V = (V MAX *[ S ])/(Km +[ S ]) , где Km – константа Михаэлиса. Легко рассчитать, что при V = V MAX /2 Km = [S], т.е. Km – это концентрация субстрата, при которой скорость реакции составляет ½ V MAX .

С целью упрощения определения величины V MAX и Km уравнение Михаэлиса-Ментен можно пересчитать.

1/V = (Km+[S])/(V MAX *[S]),

1/V = Km/(V MAX *[S]) + 1/V MAX ,

1/ V = Km / V MAX *1/[ S ] + 1/ V MAX уравнение Лайнуивера-Берка. Уравнение, описывающее график Лайнуивера-Берка – это уравнение прямой линии (y = mx + c), где 1/V MAX – это отрезок, отсекаемый прямой на оси ординат; Km/V MAX - тангенс угла наклона прямой; пересечение прямой с осью абсцисс дает величину 1/Km. График Лайнуивера-Бэрка позволяет определить Km по относительно небольшому числу точек. Этот график также используют при оценке действия ингибиторов, о чем будет сказано ниже.

Значение Km изменяются в широких пределах: от 10 -6 моль/л для очень активных ферментов, до 10 -2 – для малоактивных ферментов.

Оценки Km имеют практическую ценность. При концентрациях субстрата в 100 раз превышающих Km, фермент будет работать практически с максимальной скоростью, поэтому максимальная скорость V MAX будет отражать количество присутствующего активного фермента. Это обстоятельство используют для оценки содержания фермента в препарате. Кроме того, Km является характеристикой фермента, что используется для диагностики энзимопатий.

Ингибирование активности ферментов.

Чрезвычайно характеристикой и важной особенностью ферментов является их инактивация под влиянием определенных ингибиторов.

Ингибиторы – это вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибирование ферментативной активности может быть необратимым или обратимым, конкурентным или неконкрентным.

Необратимое ингибирование – это стойкая инактивация фермента, возникающая в результате ковалентного связывания молекулы ингибитора в активном центре или в другом особом центре, изменяющим конформацию фермента. Диссоциация столь устойчивых комплексов с регенерацией свободного фермента практически исключена. Для преодоления последствий такого ингибирования организм должен синтезировать новые молекулы фермента.

Обратимое ингибирование – характеризуется равновесным комплексообразованием ингибитора с ферментом за счет нековалентных связей, вследствие чего такие комплексы способны к диссоциации с восстановлением активности фермента.

Классификация ингибиторов на конкурентные и неконкурентные основана на том, ослабляется (конкурентное ингибирование ) или не ослабляется (неконкурентное ингибирование ) их ингибирующие действие при повышении концентрации субстрата.

Конкурентные ингибиторы – это, как правило, соединения, структура которых сходна со структурой субстрата. Это позволяет им связываться в том же активном центре, что и субстраты, препятствуя взаимодействию фермента с субстратом уже на стадии связывания. После связывания ингибитор может быть превращен в некий продукт или остается в активном центре, пока не произойдет диссоциация.

Обратимое конкурентное ингибирование можно представить в виде схемы:

E↔ E-I → E + P 1

S (неакт)

Степень ингибирования фермента определяется соотношением концентраций субстрата и фермента.

Классическим примером подобного типа ингибирования является торможение активности сукцинатдегидрогеназы (СДГ) малатом, который вытесняет сукцинат из субстратного участка и препятствует его превращению в фумарат:

Ковалентное связывание ингибитора в активном центре приводит к инактивации фермента (необратимое ингибирование). Примером необратимого конкурентного ингибирования может служить инактивация триозофосфатизомеразы 3-хлорацетолфосфатом. Этот ингибитор является структурным аналогом субстрата – диоксиацетонфосфата и необратимо присоединяется к остатку глутаминовой кислоты в активном центре:

Некоторые ингибиторы действуют менее избирательно, взаимодействуя с определенной функциональной группой в составе активного центра разных ферментов. Так, связывание йодацетата или его амида с SH-группой аминокислоты цистеина, находящийся в активном центре фермента и принемающей участие в катализе, приводит к полной утрате активности фермента:

R-SH + JCH 2 COOH → HJ + R-S-CH 2 COOH

Поэтому эти ингибиторы инактивируют все ферменты, которые имеют SH-группы, участвующие в катализе.

Необратимое ингибирование гидролаз при действии нервно-паралитических газов (зарин, зоман) обусловлено их ковалентным связыванием с остатком серина в активном центре.

Метод конкурентного ингибирования нашел широкое применение в медицинской практике. Сульфаниламидные препараты – антагонисты п-аминобензойной кислоты, могут служить примером метаболизируемых конкурентных ингибиторов. Они связываются с дигидроптератсинтетазой – бактериальным ферментом, осуществляющим превращение п-аминобензоата в фолиевую кислоту, необходимую для роста бактерий. Бактерия погибает в результате того, что связавшийся сульфаниламид превращается в другое соединение и фолиевая кислота не образуется.

Неконкурентные ингибиторы обычно связываются с молекулой фермента в участке, отличном от места связывания субстрата, и субстрат непосредственно не конкурирует с ингибитором. Поскольку ингибитор и субстрат связываются с разными центрами возможно образование как комплекса E-I, так и комплекса S-E-I. Комплекс S-E-I тоже распадается с образованием продукта, однако с меньшей скоростью, чем E-S, поэтому реакция будет замедляться, но не остановится. Таким образом, могут протекать следующие параллельные реакции:

E↔ E-I ↔ S-E-I → E-I + P

Обратимое неконкурентное ингибирование встречается сравнительно редко.

Неконкурентные ингибиторы называют аллостерическими в отличие от конкурентных (изостерических ).

Обратимое ингибирование может быть количественно изучено на основе уравнения Михаэлиса-Ментен.

При конкурентном ингибировании V MAX остается постоянной, а Km возрастает.

При неконкурентном ингибировании снижается V MAX при неизменном Km.

Если продукт реакции ингибирует фермент, катализирующий его образование, такой способ ингибирования называется ретроингибированием или ингибированием по принципу обратной связи . Например, глюкоза тормозит глюкозо-6-фосфатазу, которая катализирует гидролиз глюкозо-6-фосфата.

Биологическое значение такого ингибирования – регуляция определенных метаболических путей (см. следующее занятие).

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание студентам

1. Изучить денатурацию белков под действием растворов минеральных и органических кислот и при нагревании.

2. Обнаружить кофермент НАД в дрожжах.

3. Определить амилазную активность в моче (сыворотке крови).

9. ЭТАЛОНЫ ОТВЕТОВ НА ЗАДАЧИ , тестовые вопросы, используемые при контроле знаний на занятии (можно в виде приложения)

10. ХАРАКТЕР И ОБЪЕМ ВОЗМОЖНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ПО ТЕМЕ

(Указать конкретно характер и форму УИРС: подготовка реферативных выступлений, проведение самостоятельных исследований, имитационная игра, оформление истории болезни с использованием монографической литературы и др. формы)

А). Зависимость скорости ферментативной реакции от количества ферментов

При проведении ферментативной реакции в условиях избытка субстрата скорость реакции будет зависеть от концентрации фермента. Графическая зависимость такой реакции имеет вид прямой линии.Однако количество фермента часто невозможно определить в абсолютных величинах, поэтому на практике пользуются условными величинами, характеризующими активность фермента: одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов.

Зависимость накопления продукта (А) и убыли субстрата (Б) от времени (продолжительности) протекания реакции . Скорость ферментативной реакции определяется изменением концентрации продукта или субстрата за единицу времени. В реакциях, катализируемых ферментами 1 и 2, начальная скорость реакции, катализируемой ферментом 1, ниже, чем скорость реакции, катализируемой ферментом 2, так как тангенс угла наклона касательной к кривой профиля реакции, проведённой из "О" точки у второго фермента выше, как в случае накопления продукта (А), так и убыли субстрата (Б). Скорость в любой момент времени t определяется тангенсом угла наклона касательной к профилю реакции в момент времени t. Период времени ферментативной реакции характеризуется линейным накоплением продукта (или убылью субстрата) в зависимости от длительности реакции. Период ферментативной реакции характеризуется нелинейным накоплением продукта (или убылью субстрата) в зависимости от времени реакции.

Количество единиц активности nME определяют по формуле:

Б). Зависимость скорости ферментативной реакции от температуры среды

Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной

реакции подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы

Для большинства ферментов человека оптимальна температура 37-38 °С. Однако в природе существуют и термостабильные ферменты. Например, Taq-полимераза, выделенная из микроорганизмов, живущих в горячих источниках, не инактивируется при повышении температуры до 95 °С. Этот фермент используют в научно-практической медицине для молекулярной диагностики заболеваний с использованием метода полимеразной цепной реакции (ПЦР).


В). Зависимость скорости ферментативной реакции от количества субстрата

При увеличении количества субстрата начальная скорость возрастает. Когда фермент становится полностью насыщенным субстратом, т.е. происходит максимально возможное при данной концентрации фермента формирование фермент-субстратного комплекса, наблюдают наибольшую скорость образования продукта. Дальнейшее повышение концентрации субстрата не приводит к увеличению образования продукта, т.е. скорость реакции не возрастает. Данное состояние соответствует максимальной скорости реакции Vmax.

Таким образом, концентрация фермента - лимитирующий фактор в образовании продукта. Это наблюдение легло в основу ферментативной кинетики, разработанной учёными Л. Михаэлисом и М. Ментен в 1913 г.

Скорость реакции пропорциональна концентрации фермент-субстратного комплекса ES, a скорость образования ES зависит от концентрации субстрата и концентрации свободного фермента. На концентрацию ES влияет скорость формирования и распада ES.

Наибольшая скорость реакции наблюдается в том случае, когда все молекулы фермента находятся в комплексе с субстратом, т.е. в фермент-субстратном комплексе ES, т.е. [Е] = .

Зависимость скорости ферментативной реакции от концентрации субстрата выражается следующим уравнением (математическое выведение этой формулы можно найти в пособиях по ферментативной кинетике):

V = Vmax[S] / Km + [S]

Это уравнение получило название уравнения Михаэлиса-Ментен.

Уравнение Михаэлиса-Ментен - основное уравнение ферментативной кинетики, описывающее зависимость скорости ферментативной реакции от концентрации субстрата.

Если концентрация субстрата значительно больше Km (S >> Km), to увеличение концентрации субстрата на величину Кm практически не влияет на сумму (Km + S) и её можно считать равной концентрации субстрата. Следовательно, скорость реакции становится равной максимальной скорости: V = Vmax. В этих условиях реакция имеет нулевой порядок, т.е. не зависит от концентрации субстрата. Можно сделать вывод, что Vmax - величина постоянная для данной концентрации фермента, не зависящая от концентрации субстрата.

Если концентрация субстрата значительно меньше Km(S << Km), то сумма (Km + S) примерно равна Кm, следовательно, V = Vmax[S]/Km, т.е. в данном случае скорость реакции прямо пропорциональна концентрации субстрата (реакция имеет первый порядок).

Vmах и Km - кинетические характеристики эффективности фермента.

Vmax дает характеристику каталитической активности фермента и имеет размерность скорости ферментативной реакции моль/л, т.е. определяет максимальную возможность образования продукта при данной концентрации фермента и в условиях избытка субстрата. Кm характеризует сродство данного фермента к данному субстрату и является величиной постоянной, не зависящей от концентрации фермента. Чем меньше Кm, тем больше сродство фермента к данному субстрату, тем выше начальная скорость реакции и наоборот, чем больше Кm, тем меньше начальная скорость реакции, тем меньше сродство фермента к субстрату.