Определение расстояния от точки до прямой наклонная. Определение расстояния от точки до прямой

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется найти расстояние от точки А до прямой a .

Покажем два способа, позволяющих вычислять расстояние от точки до прямой в пространстве. В первом случае нахождение расстояния от точки М 1 до прямой a сводится к нахождению расстояния от точки М 1 до точки H 1 , где H 1 - основание перпендикуляра, опущенного из точкиМ 1 на прямую a . Во втором случае расстояние от точки до плоскости будем находить как высоту параллелограмма.

Итак, приступим.

Первый способ нахождения расстояния от точки до прямой a в пространстве.

Так как по определению расстояние от точки М 1 до прямой a – это длина перпендикуляраM 1 H 1 , то, определив координаты точки H 1 , мы сможем вычислить искомое расстояние как расстояние между точками и по формуле .

Таким образом, задача сводится к нахождению координат основания перпендикуляра, построенного из точки М 1 к прямой a . Сделать это достаточно просто: точка H 1 – это точка пересечения прямой a с плоскостью, проходящей через точку М 1 перпендикулярно к прямой a .

Следовательно, алгоритм, позволяющий определять расстояние от точки до прямой a в пространстве , таков:

Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.

Так как в условии задачи нам задана прямая a , то мы можем определить ее направляющий вектор и координаты некоторой точки М 3 , лежащей на прямой a . Тогда по координатам точек и мы можем вычислить координаты вектора : (при необходимости обращайтесь к статье координаты вектора через координаты точек его начала и конца).

Отложим векторы и от точки М 3 и построим на них параллелограмм. В этом параллелограмме проведем высоту М 1 H 1 .

Очевидно, высота М 1 H 1 построенного параллелограмма равна искомому расстоянию от точкиМ 1 до прямой a . Найдем .

С одной стороны площадь параллелограмма (обозначим ее S ) может быть найдена черезвекторное произведение векторов и по формуле . С другой стороны площадь параллелограмма равна произведению длины его стороны на высоту, то есть, , где - длина вектора , равная длине стороны рассматриваемого параллелограмма. Следовательно, расстояние от заданной точки М 1 до заданной прямой a может быть найдена из равенства как .

Итак, чтобы найти расстояние от точки до прямой a в пространстве нужно

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве.

Рассмотрим решение примера.

Пример.

Найдите расстояние от точки до прямой .

Решение.

Первый способ.

Напишем уравнение плоскости , проходящей через точку М 1 перпендикулярно заданной прямой:

Найдем координаты точки H 1 - точки пересечения плоскости и заданной прямой. Для этого выполним переход от канонических уравнений прямой к уравнениям двух пересекающихся плоскостей

после чего решим систему линейных уравнений методом Крамера:

Таким образом, .

Осталось вычислить требуемое расстояние от точки до прямой как расстояние между точками и : .

Второй способ.

Числа, стоящие в знаменателях дробей в канонических уравнениях прямой, представляют собой соответствующие координаты направляющего вектора этой прямой, то есть, - направляющий вектор прямой . Вычислим его длину: .

Очевидно, что прямая проходит через точку , тогда вектор с началом в точке и концом в точке есть . Найдем векторное произведение векторов и :
тогда длина этого векторного произведения равна .

Теперь мы располагаем всеми данными, чтобы воспользоваться формулой для вычисления расстояния от заданной точки до заданной плоскости: .

Ответ:

Взаимное расположение прямых в пространстве

Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую. В начертательной геометрии она определяется графическим путем по приведенному ниже алгоритму.

Алгоритм

  1. Прямую переводят в положение, в котором она будет параллельна какой-либо плоскости проекции. Для этого применяют методы преобразования ортогональных проекций.
  2. Из точки проводят перпендикуляр к прямой. В основе данного построения лежит теорема о проецировании прямого угла.
  3. Длина перпендикуляра определяется путем преобразования его проекций или с использованием способа прямоугольного треугольника.

На следующем рисунке представлен комплексный чертеж точки M и прямой b, заданной отрезком CD. Требуется найти расстояние между ними.

Согласно нашему алгоритму, первое, что необходимо сделать, это перевести прямую в положение, параллельное плоскости проекции. При этом важно понимать, что после проведенных преобразований фактическое расстояние между точкой и прямой не должно измениться. Именно поэтому здесь удобно использовать метод замены плоскостей , который не предполагает перемещение фигур в пространстве.

Результаты первого этапа построений показаны ниже. На рисунке видно, как параллельно b введена дополнительная фронтальная плоскость П 4 . В новой системе (П 1 , П 4) точки C"" 1 , D"" 1 , M"" 1 находятся на том же удалении от оси X 1 , что и C"", D"", M"" от оси X.

Выполняя вторую часть алгоритма, из M"" 1 опускаем перпендикуляр M"" 1 N"" 1 на прямую b"" 1 , поскольку прямой угол MND между b и MN проецируется на плоскость П 4 в натуральную величину. По линии связи определяем положение точки N" и проводим проекцию M"N" отрезка MN.

На заключительном этапе нужно определить величину отрезка MN по его проекциям M"N" и M"" 1 N"" 1 . Для этого строим прямоугольный треугольник M"" 1 N"" 1 N 0 , у которого катет N"" 1 N 0 равен разности (Y M 1 – Y N 1) удаления точек M" и N" от оси X 1 . Длина гипотенузы M"" 1 N 0 треугольника M"" 1 N"" 1 N 0 соответствует искомому расстоянию от M до b.

Второй способ решения

  • Параллельно CD вводим новую фронтальную плоскость П 4 . Она пересекает П 1 по оси X 1 , причем X 1 ∥C"D". В соответствии с методом замены плоскостей определяем проекции точек C"" 1 , D"" 1 и M"" 1 , как это изображено на рисунке.
  • Перпендикулярно C"" 1 D"" 1 строим дополнительную горизонтальную плоскость П 5 , на которую прямая b проецируется в точку C" 2 = b" 2 .
  • Величина расстояния между точкой M и прямой b определяется длиной отрезка M" 2 C" 2 , обозначенного красным цветом.

Похожие задачи:

О-о-о-о-о… ну и жесть, словно вам сам себе приговор зачитал =) Впрочем, потом релаксация поможет, тем более, сегодня купил подходящие аксессуары. Поэтому приступим к первому разделу, надеюсь, к концу статьи сохраню бодрое расположение духа.

Взаимное расположение двух прямых

Тот случай, когда зал подпевает хором. Две прямые могут :

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Справка для чайников : пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны , то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны , то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность, который мы рассматривали на уроке Понятие линейной (не) зависимости векторов. Базис векторов . Но существует более цивилизованная упаковка:

Пример 1

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

На всякий случай поставлю на распутье камень с указателями:

Остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны либо совпадают.

Коэффициент пропорциональности «лямбда» нетрудно усмотреть прямо из соотношения коллинеарных направляющих векторов . Впрочем, его можно найти и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Ответ :

Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно буквально в считанные секунды. В этой связи не вижу смысла предлагать что-либо для самостоятельного решения, лучше заложим ещё один важный кирпич в геометрический фундамент:

Как построить прямую, параллельную данной?

За незнание этой простейшей задачи сурово наказывает Соловей-Разбойник.

Пример 2

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение : Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Ответ :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими. Потому что вам ещё придётся тягаться с Бабой-Ягой, а она, знаете, любительница всяких загадок.

Пример 3

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Существует рациональный и не очень рациональный способ решения. Самый короткий путь – в конце урока.

С параллельными прямыми немного поработали и к ним ещё вернёмся. Случай совпадающих прямых малоинтересен, поэтому рассмотрим задачу, которая хорошо знакома вам из школьной программы:

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Пример 4

Найти точку пересечения прямых

Решение : Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений. Чтобы наработать соответствующие навыки, посетите урок Как решить систему уравнений?

Ответ :

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Пример 5

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце урока:

Ещё не стоптана и пара башмаков, как мы подобрались ко второму разделу урока:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Начнём с типовой и очень важной задачи. В первой части мы узнали, как построить прямую, параллельную данной, а сейчас избушка на курьих ножках развернётся на 90 градусов:

Как построить прямую, перпендикулярную данной?

Пример 6

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение : По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ :

Развернём геометрический этюд:

М-да… Оранжевое небо, оранжевое море, оранжевый верблюд.

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Пример 7

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Наше увлекательное путешествие продолжается:

Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точки до прямой выражается формулой

Пример 8

Найти расстояние от точки до прямой

Решение : всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ :

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .

Оба действия подробно разобраны в рамках данного урока.

3) Точка является серединой отрезка . Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим .

Не лишним будет проверить, что расстояние тоже равно 2,2 единицам.

Трудности здесь могут возникнуть в вычислениях, но в вышке здорово выручает микрокалькулятор, позволяющий считать обыкновенные дроби. Неоднократно советовал, посоветую и снова.

Как найти расстояние между двумя параллельными прямыми?

Пример 9

Найти расстояние между двумя параллельными прямыми

Это очередной пример для самостоятельного решения. Немного подскажу: тут бесконечно много способов решения. Разбор полётов в конце урока, но лучше постарайтесь догадаться сами, думаю, вашу смекалку удалось неплохо разогнать.

Угол между двумя прямыми

Что ни угол, то косяк:


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4 углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Как найти угол между двумя прямыми? Существуют две рабочие формулы:

Пример 10

Найти угол между прямыми

Решение и Способ первый

Рассмотрим две прямые, заданные уравнениями в общем виде:

Если прямые не перпендикулярны , то ориентированный угол между ними можно вычислить с помощью формулы:

Самое пристальное внимание обратим на знаменатель – это в точности скалярное произведение направляющих векторов прямых:

Если , то знаменатель формулы обращается в ноль, а векторы будут ортогональны и прямые перпендикулярны. Именно поэтому сделана оговорка о неперпендикулярности прямых в формулировке.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса (см. Графики и свойства элементарных функций ):

Ответ :

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Если очень хочется получить положительный угол, нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты взять из первого уравнения . Короче говоря, начать необходимо с прямой .

Санкт-Петербургский государственный морской технический университет

Кафедра компьютерной графики и информационного обеспечения

ЗАНЯТИЕ 3

ПРАКТИЧЕСКОЕ ЗАДАНИЕ №3

Определение расстояния от точки до прямой линии.

Определить расстояние между точкой и прямой линией можно, выполнив следующие построения (см. рис.1):

· из точки С опустить перпендикуляр на прямую а ;

· отметить точку К пересечения перпендикуляра с прямой;

· измерить величину отрезка КС , началом которого является заданная точка, а концом отмеченная точка пересечения.

Рис.1. Расстояние от точки до прямой.

В основе решения задач такого типа лежит правило проецирования прямого угла: прямой угол проецируется без искажения, если хотя бы одна его сторона параллельна плоскости проекций (т.е. занимает частное положение). Начнем именно с такого случая и рассмотрим построения для определения расстояния от точки С до отрезка прямой АВ .

В данном задании нет тестовых примеров, а варианты для выполнения индивидуальных заданий приведены в таблице1 и таблице2 . Ниже описано решение задачи, а соответствующие построения показаны на рис.2.

1. Определение расстояния от точки до прямой частного положения.

Сначала строятся проекции точки и отрезка. Проекция А1В1 параллельна оси Х . Это означает, что отрезок АВ параллелен плоскости П2 . Если из точки С провести перпендикуляр к АВ , то прямой угол проецируется без искажения именно на плоскость П2 . Это позволяет провести перпендикуляр из точки С2 на проекцию А2В2 .

Падающее меню Чертеж-Отрезок (Draw - Line ) . Установить курсор в точку С2 и зафиксировать ее как первую точку отрезка. Сдвинуть курсор по направлению нормали к отрезку А2В2 и зафиксировать на нем вторую точку в момент появления подсказки Нормаль (Perpendicular ) . Обозначить построенную точку К2 . Включить режим ОРТО(ORTHO ) , и из точки К2 провести вертикальную линию связи до пересечения с проекцией А1 В1 . Точку пересечения обозначить через К1 . Точка К , лежащая на отрезке АВ , является точкой пересечения перпендикуляра, проведенного из точки С , с отрезок АВ . Таким образом, отрезок КС является искомым расстоянием от точки до прямой.

Из построений видно, что отрезок КС занимает общее положение и, следовательно, его проекции искажены. Говоря о расстоянии, всегда имеется в виду истинная величина отрезка , выражающего расстояние. Следовательно, надо найти истинную величину отрезка КС, повернув его до частного положения, например, КС || П1 . Результат построений показан на рис.2.

Из приведенных на рис.2 построений, можно сделать вывод: частное положение прямой (отрезок параллелен П1 или П2 ) позволяет быстро строить проекции расстояния от точки до прямой, но при этом они искажены.

Рис.2. Определение расстояния от точки до прямой частного положения.

2. Определение расстояния от точки до прямой общего положения.

Не всегда в начальном условии отрезок занимает частное положение. При общем начальном положении выполняются следующие построения для определения расстояния от точки до прямой:

a) используя метод преобразования чертежа, перевести отрезок из общего положения в частное – это позволит построить проекции расстояния (искаженные);

b) вторично используя метод, перевести отрезок, соответствующий искомому расстоянию в частное положение – получим проекцию расстояния по величине, равной действительной.

Рассмотрим последовательность построений для определения расстояния от точки А до отрезка общего положения ВС (рис.3).

При первом вращении необходимо получить частное положение отрезка В C . Для этого в слое ТМР надо соединить точки В2 , С2 и А2 . Используя команду Изменить-Повернуть (Modify Rotate ) треугольник В2С2А2 повернуть вокруг точки С2 до положения, когда новая проекция В2*С2 будет располагаться строго горизонтально (точка С неподвижна и, следовательно, ее новая проекция совпадает с первоначальной и обозначения С2* и С1* можно на чертеже не показывать). В результате будут получены новые проекции отрезка В2*С2 и точки: А2*. Далее из точек А2* и В2* проводятся вертикальные, а из точек В1 и А1 горизонтальные линии связи. Пересечение соответствующих линий определит положение точек новой горизонтальной проекции: отрезка В1*С1 и точки А1*.

В полученном частном положении можно построить проекции расстояния для этого: из точки А1* строится нормаль к В1*С1. Точка их взаимного пересечения – К1*. Из этой точки проводится вертикальная линия связи до пересечения с проекцией В2*С2. Отмечается точка К2*. В результате получены проекции отрезка АК , являющегося искомым расстоянием от точки А до отрезка прямой ВС .

Далее необходимо построить проекции расстояния в начальном условии. Для этого из точки К1* удобно провести горизонтальную линию до пересечения с проекцией В1С1 и обозначить точку пересечения К1. Затем строится точка К2 на фронтальной проекции отрезка и проводятся проекции А1К1 и А2К2. В результате построений получены проекции расстояния, но и в начальном и в новом частном положении отрезка ВС, отрезок АК занимает общее положение, а это приводит к тому, что все его проекции искажены.

При втором вращении необходимо повернуть отрезок АК в частное положение, что позволит определить истинную величину расстояния – проекция А2*К2**. Результат всех построений показан на рис.3.

ЗАДАНИЕ №3-1. С до прямой линии частного положения, заданной отрезком АВ . Ответ дать в мм (таблица 1). Убрать проецирующие прмые

Таблица 1

ЗАДАНИЕ №3-2. Найти истинную величину расстояния от точки M до прямой линии общего положения, заданной отрезком ED . Ответ дать в мм (таблица 2).

Таблица 2

Проверка и зачет выполненного ЗАДАНИЯ №3.

Требуется определить расстояние от точки до прямой. Общий план решения задачи:

- через заданную точку проводим плоскость, перпендикулярную заданной прямой;

- находим точку встречи прямой

с плоскостью;

- определяем натуральную величину расстояния.

Через заданную точку проводим плоскость, перпендикулярную прямой АВ . Плоскость задаем пересекающимися горизонталью и фронталью, проекции которых строим согласно алгоритму перпендикулярности (обратная задача).

Находим точку встречи прямой АВ с плоскостью. Это типовая задача о пересечении прямой с плоскостью (см. разд. «Пересечение прямой с плоскостью»).

Перпендикулярность плоскостей

Плоскости взаимно перпендикулярны, если одна из них содержит прямую, перпендикулярную другой плоскости. Поэтому для проведения плоскости, перпендикулярной другой плоскости, необходимо сначала провести перпендикуляр к плоскости, а затем через него провести искомую плоскость. На эпюре плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна плоскости ABC .

Если плоскости заданы следами, то возможны следующие случаи:

- если две перпендикулярные плоскости являются проецирующими, то их собирательные следы взаимно перпендикулярны;

- плоскость общего положения и проецирующая плоскость перпендикулярны, ссли собирательный след проецирующей плоскости перпендикулярен одноименному слсду плоскости общего положения;

- если одноименные следы двух плоскостей общего положения перпендикулярны, то плоскости не перпендикулярны друг другу.

Метод замены плоскостей проекций

замены плоскостей проекций

заключается в том, что плоскости про-

екций заменяются другими плоскос-

так, чтобы

геометрический

объект в новой системе плоскостей

проекций стал занимать частное -по

ложение, что позволяет упростить ре-

шение задач. На пространственном ма-

кете показана замена плоскостиV на

новую V 1 . Показано также проециро-

вание точки А на исходные плоскости

проекций и новую плоскость проекций

V 1 . При замене плоскостей проекций

ортогональность системы сохраняется.

Преобразуем пространственный макет в плоскостной путем поворота плоскостей по стрелкам. Получим три плоскости проекций, совмещенные в одну плоскость.

Затем удалим плоскости проекций и

проекции

Из эпюра точки следует правило: при

замене V на V 1 для того, чтобы по-

фронтальную

цию точки, необходимо от новой оси

отложить аппликату точки, взятую из

предыдущей системы плоскостей про-

екций. Аналогично можно доказать,

замене Н на Н 1 необходимо

отложить ординату точки.

Первая типовая задача метода замены плоскостей проекций

Первая типовая задача метода замены плоскостей проекций – это преобразование прямой общего положения сначала в линию уровня, а затем в проецирующую прямую. Эта задача является одной из основных, так как применяется при решении других задач, например, при определении расстояния между параллельными и скрещивающимися прямыми, при определении двугранного угла и т.д.

Производим замену V → V 1 .

ось проводим параллельно горизон-

проекции.

фронтальную проекцию прямой, для

откладываем

аппликаты точек. Новая фронтальная

проекция прямой является НВ прямой.

Сама прямая становится фронталью.

Определяется угол α °.

Производим замену Н → Н 1 . Новую ось проводим перпендикулярно фронтальной проекции прямой. Строим новую горизонтальную проекцию прямой, для чего от новой оси откладываем ординаты прямой, взятые из предыдущей системы плоскостей проекций. Прямая становится горизон- тально-проецирующей прямой и «вырождается» в точку.