Как восстановить миелиновую оболочку нерва. Миелиновая оболочка нервного волокна: функции, восстановление

Вредные привычки, особенно алкоголь и курение, вызывают регулярное раздражение клеток нервной системы. В мягких тканях накапливаются канцерогены, происходит сужение сосудов, что усложняет и ускоряет патогенные процессы. Отказ от вредных пристрастий сохранит иммунитет и снизит риск заболевания в 2 раза.

Обязательно следует выполнять лечебную физкультуру по 30 минут в день минимум, а также соблюдать диету. Уменьшают симптомы болезни продукты, богатые омега кислотами.

Можно ли вернуться к полноценной жизни?

Несмотря на опасность заболевания, многие люди могут жить полноценной жизнью после рассеянного склероза и прожить достаточно продолжительно . Для этого следует вести активный образ жизни, посещать спортивные мероприятия, хорошо высыпаться, правильно питаться здоровой пищей, не перетруждать себя нагрузками.

Важно! Обязательно следует посещать лечащего специалиста и следовать его рекомендациям.

Миелин

Что такое?

Миелином называют вещество, которое образует мякотную оболочку, отвечающую за электроизоляцию нервных волокон, а также, за скорость передачи электрического импульса. Простыми словами, это основная составляющая в работе нервной системы человека.

Можно ли поврежденные нервы вернуть к норме?

Заболевания, которые связаны с разрушениями миелиновой оболочки, подвергаются лечению . Однако, процесс это сложный. Восстановление миелина направлено на купирование симптомов и дальнейшую остановку разрушения. Чем раньше произведена диагностика , тем проще будет восстановить поврежденные нервы.

Как оформить инвалидность с таким заболеванием, читайте в статье .

Как восстановить миелиновую оболочку при рассеянном склерозе?

Как восстановить миелиновую оболочку? Современное лечение (терапия) дает возможность это сделать, но нет гарантий, что новая миелиновая оболочка станет функционировать не хуже прежней.

Есть риск того, что болезнь может перетекать в хроническую форму, с сохранением симптомов. Однако, даже небольшая ремиелинизация может остановить прогрессирование болезни и частично вернуть некоторые функции. Регенерация миелина проводится современными лекарственными препаратами , стоимость которых достаточно высокая.

Лечение

Очагами рассеянного склероза могут стать пирамидальная система головного мозга, а также стволовая, мозжечковая, оптическая, спинальная. Могут нарушаться

Миелиновая оболочка помогает нервам передавать сигналы. Если она повреждена, возникают проблемы с памятью, нередко у человека появляются специфические движения и функциональные нарушения. Определенные аутоиммунные болезни и внешние химические факторы, вроде пестицидов в еде, способны повредить миелиновую оболочку. Но существует ряд способов, в том числе витамины и пища, которые помогут регенерировать данное покрытие нервов: вам потребуются особые минералы и жиры, предпочтительно полученные посредством грамотной питательной диеты. Тем более это требуется, если вы страдаете от болезни, вроде рассеянного склероза: обычно организм в состоянии восстановить поврежденную миелиновую оболочку при некоторой помощи с вашей стороны, но если проявился склероз, лечение может стать очень трудным. Итак, здесь перечислены средства, которые помогут поддержать восстановление и регенерацию миелиновой оболочки, а также предотвратить склероз.

Вам потребуются:
- фолиевая кислота;
- витамин B12;
- кислоты жирные незаменимые;
- витамин С;
- витамин D;
- зеленый чай;
- мартиния;
- белая ива;
- босвелия;
- оливковое масло;
- рыба;
- орехи;
- какао;
- авокадо;
- цельнозерновые;
- бобовые;
- шпинат.

1. Обеспечьте себе добавки к пище в виде фолиевой кислоты и витамина B12. Телу требуются два этих вещества, чтобы защищать нервную систему и грамотно «чинить» миелиновые оболочки. В исследовании, опубликованном в российском медицинском журнале «Врачебное дело» в 1990-х, ученые обнаружили, что пациенты, страдающие от рассеянного склероза, которых лечили фолиевой кислотой, показали значительное улучшение по симптоматике и в отношении восстановления миелина. И фолиевая кислота, и В12 способны и помочь предотвратить разрушение, и регенерировать повреждение миелина.

2. Снизьте уровень воспаления в организме, чтобы защитить миелиновые оболочки от повреждения. Анти-воспалительная терапия на текущий момент - оплот лечения рассеянного склероза и в дополнение к принятию предписанных медикаментов, пациенты так же могут опробовать пищевые и травяные анти-воспалительные средства. Среди натуральных средств отмечены кислоты жирные незаменимые, витамин С, витамин D, зеленый чай, мартиния, белая ива и босвелия.

3. Потребляйте кислоты жирные незаменимые ежедневно. Миелиновая оболочка в основном состоит из кислоты жирной незаменимой: олеиновой кислоты, омега-6, найденной в рыбе, оливках, курице, орехах и семенах. Плюс, кушайте глубоководную рыбу - это обеспечит вам хорошее количество кислот омега-3: для улучшения настроения, обучения, памяти и здоровья мозга в целом. Жирные кислоты омега-3 снижают воспаление в теле и помогают защитить миелиновые оболочки.
Жирные кислоты так же можно найти в льняном семени, рыбьем жире, лососе, авокадо, грецких орехах и фасоли.

4. Поддерживайте иммунную систему. Воспаление, которое вызывает повреждение миелиновых оболочек, вызвано иммунными клетками и аутоиммунными заболеваниями организма. Питательные вещества, которые помогут иммунитету, включают: витамин С, цинк, витамин А, витамин Д и комплекс витаминов В. В исследовании 2006 г., опубликованном в «Журнале Американской медицинской ассоциации» (The Journal of the American Medical Association), витамин D был назван как средство, значительно помогающее снизить риск демиелинизации и проявления рассеянного склероза.

5. Кушайте пищу с высоким содержанием холина (витамин D) и инозита (инозитола; B8). Данные аминокислоты критичны в отношении восстановления миелиновых оболочек. Холин вы найдете в яйцах, говядине, бобах и некоторых орехах. Он помогает предотвратить отложение жиров. Инозит поддерживает здоровье нервной системы, оказывая помощь в создании серотонина. Орехи, овощи и бананы содержат инозитол. Две аминокислоты объединяются, чтобы произвести лецитин, который уменьшает содержание «плохих» жиров в кровотоке. Ну а холестерин и подобные жиры известны своим свойством препятствовать восстановлению миелиновых оболочек.

6. Кушайте продукты, богатые витаминами группы В. Витамин В-1, так же называемый тиамин, и В-12 - физические компоненты миелиновой оболочки. В-1 ищем в рисе, шпинате, свинине. Витамин В-5 можно найти в йогурте и тунце. Цельное зерно и молочные продукты богаты всеми витаминами из В-группы, и их так же можно найти в цельнозерновом хлебе. Данные питательные вещества усиливают метаболизм, сжигающий жиры в организме, а так же они переносят кислород.

7. Вам необходима и пища, содержащая медь. Липиды могут быть созданы только с использованием зависящих от меди энзимов. Без этой помощи другие питательные вещества не смогут сделать свою работу. Медь найдена в чечевице, миндале, семенах тыквы, кунжуте и полусладком шоколаде. Печень и морепродукты так же могут содержать медь в более низких дозах. Сухие травы, вроде орегано и тимьяна - это простой способ добавить данный минерал в свою диету.

Дополнения и предупреждения:

Молоко, яйца и антациды способны вмешаться в усвоение меди;

В кулинарных рецептах поменяйте оливковое жидкое масло на твердое (такое тоже бывает!);

Если выпить слишком много витаминов группы В, они просто выйдут из организма, не причиняя ему вреда;

Передозировка медью может вызвать серьезные проблемы ума и тела. Так что естественное потребление данного минерала - оптимальный вариант;

Даже натуральные методики, вроде подбора пищи и прочего, должны курироваться медицинским представителем.

МИЕЛИНИЗАЦИЯ (греч. myelos костный мозг) - процесс формирования миелиновых оболочек вокруг отростков нервных клеток в период их созревания как в онтогенезе, так и при регенерации.

Миелиновые оболочки играют роль изолятора осевого цилиндра. Скорость проведения по миелинизированным волокнам выше, чем в немиелинизированных волокнах аналогичного диаметра.

Первые признаки М. нервных волокон у человека появляются в спинном мозге в пренатальном онтогенезе на 5-6-м месяце. Затем число миелинизированных волокон медленно увеличивается, при этом М. в различных функциональных системах происходит не одновременно, а в определенной последовательности в соответствии с временем начала функционирования этих систем. К моменту рождения заметное число миелинизированных волокон обнаруживается в спинном мозге и стволе мозга, однако основные проводящие пути миелинизируются в постнатальном онтогенезе, у детей в возрасте 1-2 лет. В частности, пирамидный путь миелинизируется в основном после рождения. Заканчивается М. проводящих путей к 7- 10-летнему возрасту. Наиболее поздно миелинизируются волокна ассоциативных путей переднего мозга; в коре больших полушарий новорожденного встречаются лишь единичные миелинизированные волокна. Завершение М. указывает на функциональную зрелость той или иной системы мозга.

Обычно миелиновыми оболочками окружены аксоны, реже - дендриты (миелиновые оболочки вокруг тел нервных клеток встречаются как исключение). При светооптическом исследовании миелиновые оболочки выявляются как гомогенные трубочки вокруг аксона, при электронно-микроскопическом - как периодически чередующиеся электронно-плотные линии толщиной 2,5-3 нм, отстоящие друг от друга на расстоянии ок. 9,0 нм (рис. 1).

Миелиновые оболочки - упорядоченная система слоев липопротеидов, каждый из к-рых соответствует по строению клеточной мембране.

В периферических нервах миелиновая оболочка образуется мембранами леммоцитов, а в ц. н. с.- мембранами олигодендроглиоцитов. Миелиновая оболочка состоит из отдельных сегментов, к-рые разделены перемычками, так наз. перехватами узлов (перехваты Ранвье). Механизмы образования миелиновой оболочки заключаются в следующем. Миелинизирующийся аксон сначала погружается в продольное углубление на поверхности леммоцита (или олигодендроглиоцита). По мере погружения аксона в аксоплазму леммоцита края бороздки, в к-рой он располагается, сближаются, а затем смыкаются, образуя мезаксон (рис. 2). Полагают, что формирование слоев миелиновой оболочки происходит за счет спирального вращения аксона вокруг своей оси или вращения леммоцита вокруг аксона.

В ц. н. с. основным механизмом образования миелиновой оболочки является увеличение длины мембран при их «скольжении» относительно друг друга. Первые слои расположены сравнительно рыхло и содержат значительное количество цитоплазмы леммоцитов (или олигодендроглиоцитов). По мере формирования миелиновой оболочки количество аксоплазмы леммоцита внутри слоев миелиновой оболочки уменьшается и в конце концов исчезает полностью, в результате чего аксоплазматические поверхности мембран смежных слоев смыкаются и образуется основная электронно-плотная линия миелиновой оболочки. Слившиеся при формировании мезаксона наружные отделы клеточных мембран леммоцита образуют более тонкую и менее выраженную промежуточную линию миелиновой оболочки. После того как сформируется миелиновая оболочка, в ней можно выделить наружный мезаксон, т. е. слившиеся мембраны леммоцита, переходящие в последний слой миелиновой оболочки, и внутренний мезаксон, т. е. слившиеся мембраны леммоцита, непосредственно окружающие аксон и переходящие в первый слой миелиновой оболочки. Дальнейшее развитие или созревание сформированной миелиновой оболочки заключается в увеличении ее толщины и количества слоев миелина.

Библиография: Боровягин В. Л. К вопросу о миелинизации периферической нервной системы амфибий, Докл. АН СССР, т. 133, № 1, с. 214, 1960; Марков Д. А. и Пашковская М. И. Электронномикроскопические исследования при де^ миелинизирующих заболеваниях нервной системы, Минск, 1979; Bunge М. В., Bunge R. Р. a. R i s H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord, J. biophys, biochem. Cytol., v. 10, p. 67, 1961; G e r e n B. B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos, Exp. Cell. Res., v. 7, p. 558, 1954.

H. H. Боголепов.

Компонент

В миелине

В белом веществе

В сером веществе

Белки

Общ.фосфолипиды

Фофатидилсерин

Фосфатидилинозит

Холестерин

Сфингомиелин

Церебозиды

Плазмогены

ганглиозиды

Строение нервного волокна. Миелиновая оболочка

Из аксонов нейронов образуются нервные волокна . Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками.

В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные).

1. Безмиелиновое волокно

Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.

Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.

2. Миелиновое волокно

Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками.

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики - междоузлия , между которыми имеются немиелизированные участки – перехваты Ранвье.

Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса.

Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.

Молекулярная организация миелиновой оболочки (по Х.Хидену)

1-аксона; 2-миелин; 3-ось волокна; 4-белок (наружные слои); 5-липиды; 6-белок (внутренний слой); 7-холестерин; 8-цереброзид; 9- сфингомиелин; 10-фосфатидилсерин.

Химический состав миелина

Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белков. 90% всех липидов миелина приходиться на холестерин, фосфолипиды и цереброзиды. Миелин содержит немного ганглиозидов.

Белковый состав миелина периферической и центральной нервной системы различен. Миелин ЦНС содержит три белка:

    Протеолипид, составляет 35 – 50% от общего содержания белка в миелине, имеет молекулярную массу 25кДа, растворим в органических растворителях;

    Основной белок А 1 , составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим в слабых кислотах;

    Белки Вольфграма - несколько кислых белков большой массы растворимых в органических растворителях, функция которых неизвестна. Составляют 20% от общего содержания белка в миелине.

В миелине ПНС, протеолипид отсутствует, основной белок представлен белками А 1 (немного), Р 0 и Р 2 .

В миелине обнаружена ферментативная активность:

    холестеролэстеразы;

    фосфодиэстеразы, гидролизирующей цAMФ;

    протеинкиназы А, фосфорилирующей основной белок;

    сфингомиелиназы;

    карбоангидразы.

Миелин благодаря своему строению обладает более высокой стабильностью (устойчивостью к разложению), чем другие плазматических мембран.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В НЕРВНОЙ ТКАНИ

Энергетический обмен нервной ткани

Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови.

Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет. При этом быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.

Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.

В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.

Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы, выделяемой из печени в артериальную кровь. В физиологических условиях 85-90% глюкозы метаболизируется аэробным путем, а 10-15% - анаэробным.

В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты , в первую очередь глутамат и аспартат.

В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).

В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела .

Полученная энергия тратится в первую очередь:

    на создание мембранного потенциала , который используется для проведения нервных импульсов и активного транспорта;

    для работы цитоскелета , обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;

    для синтеза новых веществ , в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;

    для обезвреживания аммиака .

Обмен углеводов нервной ткани

Нервная ткань характеризуется высоким углеводным обменом, в котором преобладает катаболизм глюкозы. Так как нервная ткань инсулиннезависима , с высокой активностью гексокиназы (имеет низкую константу Михаэлиса Ментона) и низкой концентрацией глюкозы, глюкоза поступает из крови в нервную ткань постоянно, даже если в крови мало глюкозы и отсутствует инсулин.

Активность ПФШ нервной ткани невелика. НАДФН 2 используется при синтезе нейромедиаторов, аминокислот, липидов, гликолипидов, компонентов нуклеиновых кислот и для работы антиоксидантной системы.

Высокая активность ПФШ наблюдается у детей в период миелинизации и при травмах головного мозга.

Обмен белков и аминокислот нервной ткани

Нервная ткань характеризуется высоким обменом аминокислот и белков.

Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий и белки мозжечка отличаются высокой скоростью обновления, что связано с синтезом медиаторов, БАВ, специфических белков. Белое вещество, богатое проводниковыми структурам, обновляется особенно медленно.

Аминокислоты в нервной ткани используется как:

    источник «сырья» для синтеза белков, пептидов, некоторых липидов, ряда гормонов, витаминов, биогенных аминов и др. В сером веществе преобладает синтез БАВ, в белом – белков миелиновой оболочки.

    нейротрансмиттеры и нейромодуляторы. Аминокислоты и их производные участвуют в синаптической передаче (глу), в осуществлении межнейрональных связей.

    Источник энергии . Нервная ткань окисляет в ЦТК аминокислоты глутаминовой группы и аминокислоты с разветвленной боковой цепью (лейцин, изолейцин, валин).

    Для выведения азота . При возбуждение нервной системы возрастает образование аммиака (в первую очередь за счет дезаминирования АМФ), который связывается с глутаминовой кислотой с образованием глутамина. Реакцию с затратой АТФ катализирует глутаминсинтетаза.

Аминокислоты глутаминовой группы имеют самый активный метаболизм в нервной ткани.

N -ацетиласпарагиновая кислота (АцА) является частью внутриклеточного пула анионов и резервуаром ацетильных групп. Ацетильные группы экзогенной АцА служат источником углерода для синтеза жирных кислот в развивающемся мозге.

Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

Метионин является источником метильных групп и на 80% используется для синтеза белка.

Цистатионин важен для синтеза сульфитидов и сульфатилрованных мукополисахаридов.

Обмен азота нервной ткани

Непосредственным источником аммиака в головном мозге служит непрямое дезаминирование аминокислот с участием глутаматдегидрогеназы, а так же дезаминирование с участием АМФ–ИМФ цикла.

Обезвреживание токсичного аммиака в нервной ткани происходит с участием α-кетоглутарата и глутамата.

Липидный обмен нервной ткани

Особенностью обмена липидов в мозге является то, что они не используются в качестве энергетического материала, а в основном идут на строительные нужды. Липидный обмен в целом невысокий и различается в белом и сером веществе.

В нейронах серого вещества из фосфоглицеридов наиболее интенсивно обновляются фосфотидилхолины и особенно фосфотидилинозитол, который является предшественником внутриклеточного посредника ИТФ.

Обмен липидов в миелиновых оболочках протекает медленно, очень медленно обновляются холестерин, цереброзиды и сфингомиелины. У новорожденных холестерин синтезируется в самой нервной ткани, у взрослых этот синтез резко снижается, вплоть до полного прекращения.

Системные повреждения периферических нервов (полиневропатии) и повреждения отдельных нервных стволов (невропатии) составляют большую группу заболеваний периферической нервной системы различной этиологии и сложного патогенеза, приводящих к разрушению нервных волокон или их оболочек. Распространенность патологических процессов, протекающих с повреждением периферических нервов настолько велика, что большая часть обращений пациентов к неврологу связана именно с ними.

Международная статистическая классификация болезней (МКБ-10) содержит огромный раздел (G 50 - 64), который включает в себя все многообразие клинических вариантов невропатий: от поражения отдельных нервов, корешков и сплетений до системных полиневропатий.

Повреждения периферических нервов может быть обусловлено обменными нарушениями, ишемией, заболеваниями крови, интоксикациями, алиментарными факторами, травмами, аллергическими реакциями, воспалительными процессами и другими причинами.

Страдания образований периферической нервной системы выступают как самостоятельное заболевание или клинический синдром и так часто встречаются в практике врача, что ни один специалист как терапевтического, так и хирургического профиля не может пройти мимо этой проблемы.

К периферической нервной системе относится задние и передние корешки спинного мозга, межпозвоночные спинальные ганглии, спинномозговые нервы, их сплетения, периферические нервы, а также корешки и ганглии черепных нервов и черепные нервы.

Формирование периферического нерва происходит следующим образом. Следуя на периферию из спинного мозга (или из полости черепа), спинальные нервы (или черепные нервы), состоящие из порций двигательных, чувствительных волокон, образуют периферический нерв. Периферические нервы являются в большинстве своем смешанными и состоят из двигательных волокон передних корешков (аксонов клеток передних рогов), чувствительных волокон (дендритов клеток межпозвонковых узлов) и вазомоторно-секреторно-трофических волокон (симпатических и парасимпатических) от соответствующих клеток серого вещества боковых рогов спинного мозга и ганглиев симпатического пограничного ствола.

Нервное волокно, входящее в состав периферического нерва, состоит из осевого цилиндра, расположенного в центре волокна, миелиновой оболочки, одевающей осевой цилиндр и швановской оболочки. Крупные нервные стволы состоят из 800 000 – 1 000 000 нервных волокон, которые обеспечивают значительный функциональный запас прочности периферической нервной системы. Считается, что функция нервного ствола нарушается только в случае гибели половины нервных волокон.

Миелиновая оболочка нервного волокна местами прерывается, образуя так называемые перехваты Равнье. Долгие годы считалось, что миелиновая оболочка обеспечивает роль электрического изолятора в процессе проведения возбуждения по нервному волокну. Однако, роль миелиновой оболочки, вероятно, более значительна – она принимает непосредственное участие в формировании электрического потенциала нервного волокна. Несомненно, ее участие в процессах обмена веществ нервной клетки чрезвычайно велико – функция нервного волокна нарушается при повреждении миелиновой оболочки. Соединительная ткань в периферических нервах представлена оболочками, одевающими нервный ствол (эпиневрий), отдельные его пучки (периневрий) и нервные волокна (эндоневрий). В оболочках проходят сосуды, питающие нерв. Миелиновая оболочка составляет основную массу периферического нерва.

Миелин – вещество, состоящее из холестерина, фосфолипидов и белков – результат фолат-зависимого синтеза, протекающего при непосредственном участии фермента метилентетрагидрофолатредуктазы (МТГФР) и коферментов (фолиевая кислота и витамины группы В).

Миелиновая оболочка – наиболее уязвимая часть периферического нерва. Она страдает в результате разрушения (токсические, иммунные механизмы) или недостаточного синтеза составляющих миелина (обменные нарушения, недостаток витаминов). В любом случае синтез миелина требует существенного напряжения многочисленных ферментных систем, поскольку общая масса этого вещества в организме превышает 200 гр.

Клинический синдром повреждения периферических нервов чаще всего связан с сегментарной демиелинизацией нервных волокон. Сегментарная демиелинизация (миелинопатия) означает повреждение миелиновых оболочек при сохранности аксонов. Наиболее существенным функциональным проявлением демиелинизации является блокада проводимости. Функциональная недостаточность в блокированном аксоне проявляется также, как и при пересечении аксона. Несмотря на то, что пересечение нерва и блокада проводимости при демиелинизации обнаруживают сходство по остроте развития двигательных и чувствительных расстройств, между ними имеются различия. Так при демиелинизирующих невропатиях блокада проводимости часто бывает преходящей и ремиелинизация может протекать быстро в течение дней или недель, нередко заканчиваясь выздоровлением (4). Таким образом, при этом процессе прогноз благоприятнее и восстановление идет быстрее, нежели течение. Важнейшим клиническим признаком сегментарной демиелинизации является расстройство функции по дистально-периферическому типу – чем больше протяженность периферического нерва, тем более заметными становятся нарушения проводимости. Прежде всего, это проявляется расстройствами чувствительности в дистальных отделах конечностей.

Итак, фолат-зависимый синтез миелина невозможен без витаминов группы В. Между тем, недостаток тиамина (витамин В1) считается одной из характерных черт типичных болезней цивилизации (5). Изменения характера питания с увеличением доли рафинированных углеводов, значительное закисление внутренней среды вследствие изменения структуры продуктов питания – не способствуют усвоению тиамина, даже если он в достаточном количестве присутствует в пище. Между тем В1 принимает участие в белковом синтезе, регуляции жирового и водно-солевого обмена. Многочисленными исследованиями установлено, что тиамин обладает антиоксидантными, иммуномодулирующими свойствами, участвует в метаболизме важнейших нейромедиаторов – серотонина и гамма-аминомасляной кислоты, ацетилхолина. Являясь основным коферментом МТГФР, он принимает непосредственное участие в синтезе миелина.

Витамин В6 – пиридоксин является коферментом более 100 ферментов, принимает участие в синтезе нейромедиаторов (триптофан, глицин, серотонин, дофамин, норадреналин, адреналин, гистамин). Он снижает уровень холестерина, гомоцистеина в крови. Витамин В6 контролирует эритропоэз и участвует в формировании иммунного ответа. Существует убедительная корреляция между снижением уровня пиридоксина в крови и клиническими проявлениями полиневропатий.

Витамин В12 (цианкобаламин) – основной источник кобальта, необходимого в процессах синтеза белка. В12 принимает непосредственное участие в синтезе метионина и нуклеиновых кислот. Он активирует все виды обмена веществ: белковый, жировой и углеводный. Установлено, что высокие концентрации цианкобаламина необходимы для предотвращения когнитивных нарушений (старческого слабоумия), депрессии. Участие В12 в синтезе миелина является его важнейшей функцией. Комплексные витаминные препараты нашли широкое применение в лечении больных с различными заболеваниями и патологическими процессами. Но наиболее значимо их применение при заболеваниях нервной системы. Не случайно витамины группы В заняли центральное место в лечении заболеваний периферической нервной системы. Среди многочисленных болезней нервной системы наиболее значимы показания для витаминных препаратов при полиневропатиях различного генеза (1 - 3). Хотя этиология полиневропатий крайне разнообразна, недостаток витаминов группы В объединяет большинство клинических вариантов этого неврологического синдрома. Согласно литературным данным, полиневропатии, возникающие вследствие осложнений сахарного диабета или алкогольной интоксикации, составляют более двух третей всех случаев полиневропатий (1). Современные исследования демонстрируют, что у пациентов, страдающих сахарным диабетом, дефицит тиамина развивается вследствие его повышенного выведения почками. Восполнение тиамина для больных сахарными диабетом является задачей повседневной практики. Установлено, что назначение тиамина в дозе около 300 мг в сутки в комплексе с витаминами В6 и В12 существенно уменьшает или устраняет проявления полиневропатии, в первую очередь, уменьшая нейропатическую боль (2). Помимо уменьшения проявлений расстройств чувствительности витамины при полиневропатии оказывают существенное влияние на проявления вегетативно-трофических нарушений при нейропатической форме синдрома диабетической стопы.

Системные нарушения обмена, протекающие с ожирением, в последние годы привлекают все большее внимание врачей. Оперативное лечение морбидного ожирения становится все более распространенной практикой. Оперативная реконструкция желудочно-кишечного тракта часто спасает пациентов от ряда фатальных осложнений. Однако, в последующем, в результате нарушения процесса усвоения биологически важных веществ, нередко больные страдают от нарушений со стороны периферической нервной системы. Пациенты, после хирургических операций по поводу морбидного ожирения требуют компенсирующего лечения с обязательным включением витаминов группы В в течение всего периоды реабилитации. Основной целью назначения витаминных препаратов в этом случае является предотвращение дисметаболических полиневропатий.

Острые воспалительные демиелинизирующие полиневропатии требуют парентерального введения витаминов группы В как в остром, так и восстановительном периоде. При этом для активации синтеза миелина необходима комбинация витаминов группы В с фолиевой кислотой (4).

Недостаток витаминов группы В при алкогольной полиневропатии обусловлен как минимум тремя факторами. Этиловый спирт ингибирует процесс фосфорилирования тиамина. Алкоголь нарушает всасывание всех витаминов в кишечнике и снижает печеночные запасы тиамина. Дефицит витаминов у алкоголиков связан с алиментарным фактором – недостаточно разнообразным питанием. У больных алкоголизмом лекарственные препараты, содержащие витамины, составляют важнейшую часть лечения. При этом необходимо длительное назначение препаратов, содержащих тиамин и пиридоксин. В открытом проспективном исследовании Е.А.Анисимовой (2001) изучалась эффективность бентиамина у мужчин, страдающих хроническим алкоголизмом. На фоне монотерапии бенфотиамином отмечено уменьшение болевого синдрома, редукция сенсорных, вегетативных и двигательных расстройств. Установлено увеличение скорости проведения по нервному волокну.

Безусловным показанием к назначению витаминных препаратов следует считать поражения черепных нервов различной этиологии. В клинической практике чаще всего комплексной терапии требует нейросенсорная тугоухость, неврит слухового нерва, невропатия лицевого нерва, невропатия зрительного нерва. В большинстве случаев в патогенезе невропатий черепных нервов существенную роль играют сосудистые факторы. Восстановление проведения по нервным стволам в этих случаях возможно при восстановлении микроциркуляции и длительном лечении витаминами группы В.

Относительно коротких курсов витаминной терапии требуют радикулопатии, связанные с вертеброгенными факторами. После устранения причин компрессии корешка, витамины группы В назначают на 2 – 3 недели, что в существенной мере ускоряет процесс реабилитации.

Препараты, содержащие витамины в необходимых пропорциях, широко представлены в продукции таких крупных производителей как корпорация . Все необходимые витамины содержит . Высокое содержание витаминов группы В отличает композицию Мультивитаминный комплекс пригоден как для профилактики поражений нервной системы, так и для лечебных программ. Из лекарственных средств в клинической практике нашли применение такие препараты как Мильгамма, нейромультивит.

Таким образом, лечение витаминами в комплексной терапии заболеваний периферической нервной системы не только не утратило своего значения, но получило более глубокое обоснование. Следует считать безусловным показанием назначение витаминов группы В во всех случаях повреждения нервной системы, в основе которых лежат процессы демиелинизации или нарушения ремиелинизации. Современная коррекция миелинопатий как системных обменных нарушений невозможна без своевременного и адекватного лечения препаратами, содержащими тиамин, пиридоксин и цианкобаламин. При заболеваниях, протекающих с нарушениями углеводного, жирового и белкового обмена (сахарный диабет) систематическое лечение витаминными препаратами необходимо для активации обменных процессов, восстановления процессов синтеза белковых соединений. Препараты, содержащие витамины совершенно необходимы для больных, страдающих от нарушений всасывания эссенциальных коферментов (алкоголизм, больные перенесшие сложные реконструктивные операции на органах желудочно-кишечного тракта).

Литература

1. Анисимова Е.И. Эффективность бенфотиамина в терапии алкогольной полиневропатии Журнал неврологии и психиатрии им. С.С.Корсакова. 2001. Т 12. № 101. С. 32-36.

2. Анциферов М.Б., Волкова А.К. Диагностика и лечение диабетической дистальной полинейропатии у больных сахарным диабетом в амбулаторной практике. РМЖ. 2008. Т. 16. № 15. С. 12 .- 15.

3. Зиновьева О.Е. Препараты альфа-липоевой кислоты в лечении диабетической полиневропатии. Неврология, психиатрия, нейросоматика. 2009. № 1. С. 58 – 62.

5. Mooney S., Leudorf J.E. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009. T.14. p. 329 – 51.