Химические свойства простых веществ металлов и неметаллов. Химические свойства металлов с примерами

1. Металлы реагируют с неметаллами.

2 Me + n Hal 2 → 2 MeHal n

4Li + O2 = 2Li2O

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2

2. Металлы, стоящие до водорода, реагируют с кислотами (кроме азотной и серной конц.) с выделением водорода

Me + HCl → соль + H2

2 Al + 6 HCl → 2 AlCl3 + 3 H2

Pb + 2 HCl → PbCl2↓ + H2

3. Активные металлы реагируют с водой с образованием щелочи и выделением водорода.

2Me + 2n H 2 O → 2Me(OH) n + n H 2

Продуктом окисления металла является его гидроксид – Me(OH) n (где n-степень окисления металла).

Например:

Ca + 2H 2 O → Ca(OH) 2 + H 2

4. Металлы средней активности реагируют с водой при нагревании, образуя оксид металла и водород.

2Me + nH 2 O → Me 2 O n + nH 2

Продукт окисления в таких реакциях – оксид металла Me 2 O n (где n-степень окисления металла).

3Fe + 4H 2 O → Fe 2 O 3 ·FeO + 4H 2

5. Металлы, стоящие после водорода, с водой и растворами кислот (кроме азотной и серной конц.) не реагируют

6. Более активные металлы вытесняют менее активные из растворов их солей.

CuSO 4 + Zn = Zn SO 4 + Cu

CuSO 4 + Fe = Fe SO 4 + Cu

Активные металлы ‑ цинк и железо заместили медь в сульфате и образовали соли. Цинк и железо окислились, а медь восстановилась.

7. Галогены реагируют с водой и раствором щелочи.

Фтор в отличие от других галогенов воду окисляет:

2H 2 O + 2F 2 = 4HF + O 2 .

на холоде: Cl2+2KOH=KClO+KCl+H2OCl2+2KOH=KClO+KCl+H2O образуется хлорид и гипохлорит

при нагревании: 3Cl2+6KOH−→KClO3+5KCl+3H2O3Cl2+6KOH→t,∘CKClO3+5KCl+3H2O образуется лорид и хлорат

8 Активные галогены (кроме фтора) вытесняют менее активные галогены из растворов их солей.

9. Галогены не реагируют с кислородом.

10. Амфотерные металлы (Al, Be, Zn) реагируют с растворами щелочей и кислот.

3Zn+4H2SO4=3 ZnSO4+S+4H2O

11. Магний реагирует с углекислым газом и оксидом кремния.

2Мg + CO2 = C + 2MgO

SiO2+2Mg=Si+2MgO

12. Щелочные металлы (кроме лития) с кислородом образуют пероксиды.

2Na + O 2 = Na 2 O 2

3. Классификация неорганических соединений

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характерными металлическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.

А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH-.

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.

Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают характерными свойствами, а именно высокой электро- и теплопроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Заметим, что из 118 химических элементов, которые были открыты на данный момент, к металлам следует относить:

  • среди группы щёлочноземельных металлов 6 элементов;
  • среди щелочных металлов 6 элементов;
  • среди переходных металлов 38;
  • в группе лёгких металлов 11;
  • среди полуметаллов 7 элементов,
  • 14 среди лантаноидов и лантан,
  • 14 в группе актиноидов и актиний,
  • Вне определения находятся бериллий и магний.

Исходя из этого, к металлам относятся 96 элементов. Рассмотрим подробней, с чем реагируют металлы. Поскольку на внешнем электронном уровне у большинства металлов находится небольшое количество электронов от 1 до 3-х, то они в большинстве своих реакций могут выступать в качестве восстановителей (то есть они отдают свои электроны другим элементам).

Реакции с наиболее простыми элементами

  • Кроме золота и платины, абсолютно все металлы реагируют с кислородом. Заметим также, что реакция при высоких температурах происходит с серебром, однако оксид серебра(II) при нормальных температурах не образуется. В зависимости от свойств металла, в результате реакции с кислородом образовываются оксиды, надпероксиды и пероксиды.

Приведем примеры каждого из химического образования:

  1. оксид лития – 4Li+O 2 =2Li 2 O;
  2. надпероксид калия – K+O 2 =KO 2 ;
  3. пероксид натрия – 2Na+O 2 =Na 2 O 2 .

Для того, чтобы получить оксид из пероксида, его нужно восстановить тем же металлом. Например, Na 2 O 2 +2Na=2Na 2 O. С малоактивными и со средними металлами подобная реакция будет происходить только при нагревании, к примеру: 3Fe+2O 2 =Fe 3 O 4 .

  • С азотом металлы могут реагировать только с активными металлами, однако при комнатной температуре может взаимодействовать только литий, образуя при этом нитриды – 6Li+N 2 =2Li 3 N, однако при нагревании происходит такая химическая реакция 2Al+N 2 =2AlN, 3Ca+N 2 =Ca 3 N 2 .
  • С серой, как и с кислородом, реагируют абсолютно все металлы, при этом исключением являются золото и платина. Заметим, что железо может взаимодействовать только при нагревании с серой, образовывая при этом сульфид: Fe+S=FeS
  • Только активные металлы могут реагировать с водородом. К ним относятся металлы группы IA и IIA, кроме берилия. Такие реакции могут осуществляться только при нагревании, образовывая гидриды.

    Так как степень окисления водорода считается?1, то металлы в данном случае выступают как восстановители: 2Na+H 2 =2NaH.

  • Реагируют с углеродом также самые активные металлы. В результате этой реакции образовываются ацетилениды или метаниды.

Рассмотрим, какие металлы реагируют с водой и что они дают в результате этой реакции? Ацетилены при взаимодействии с водой будут давать ацетилен, а метан получится в результате реакции воды с метанидами. Приведем примеры данных реакций:

  1. Ацетилен – 2Na+2C= Na 2 C 2 ;
  2. Метан - Na 2 C 2 +2H 2 O=2NaOH+C 2 H 2 .

Реакция кислот с металлами

Металлы с кислотами могут также реагировать по-разному. Со всеми кислотами реагируют только те металлы, которые в ряду стоят электрохимической активности металлов до водорода.

Приведем пример реакции замещения, которая показывает, с чем реагируют металлы. По-другому такая реакция называется окислительно-восстановительной: Mg+2HCl=MgCl 2 +H 2 ^.

Некоторые кислоты могут также взаимодействовать с металлами, которые стоят после водорода: Cu+2H 2 SO 4 =CuSO 4 +SO 2 ^+2H 2 O.

Заметим, что разбавленная такая кислота может реагировать с металлом по приведенной классической схеме: Mg+H 2 SO 4 =MgSO 4 +H 2 ^.

Лекция 11. Химические свойства металлов.

Взаимодействие металлов с простыми окислителями. Отношение металлов к воде, водным растворам кислот, щелочей и солей. Роль оксидной пленки и продуктов окисления. Взаимодействие металлов с азотной и концентрированной серной кислотами.

К металлам относятся все s-, d-, f-элементы, а также р-элементы, располагающиеся в нижней части периодической системы от диагонали, проведенной от бора к астату. В простых веществах этих элементов реализуется металлическая связь. Атомы металлов имеют мало электронов на внешней электронной оболочке, в количестве 1, 2, или 3. Металлы проявляют электроположительные свойства и обладают низкой электроотрицательностью, меньшей двух.

Металлам присуще характерные признаки. Это твердые вещества, тяжелее воды, с металлическим блеском. Металлы обладают высокой теплопроводностью и электропроводностью. Для них характерно испускание электронов под действием различных внешних воздействий: облучения светом, при нагревании, при разрыве (экзоэлектронная эмиссия).

Главным признаком металлов является их способность отдавать электроны атомам и ионам других веществ. Металлы являются восстановителями в подавляющем большинстве случаев. И это их характерное химическое свойство. Рассмотрим отношение металлов к типичным окислителям, к которым относятся из простых веществ – неметаллы, вода, кислоты. В таблице 1 приведены сведения об отношении металлов к простым окислителям.

Таблица 1

Отношение металлов к простым окислителям

С фтором реагируют все металлы. Исключение составляют алюминий, железо, никель, медь, цинк в отсутствии влаги. Эти элементы при реакции с фтором в начальный момент образуют пленки фторидов, защищающие металлы от дальнейшего реагирования.

При тех же условиях и причинах, железо пассивируется в реакции с хлором. По отношению к кислороду уже не все, а только ряд металлов образует плотные защитные пленки оксидов. При переходе от фтора к азоту (таблица 1) окислительная активность уменьшается и поэтому все большее число металлов не окисляется. Например, с азотом реагирует только литий и щелочноземельные металлы.

Отношение металлов к воде и водным растворам окислителей.

В водных растворах восстановительная активность металла характеризуется значением его стандартного окислительно-восстановительного потенциала. Из всего ряда стандартных окислительно-восстановительных потенциалов выделяют ряд напряжений металлов, который указан в таблице 2.

Таблица 2

Ряд напряжение металлов

Окислитель Уравнение электродного процесса Стандартный электродный потенциал φ 0 , В Восстановитель Условная активность восстановителей
Li + Li + + e - = Li -3,045 Li Активный
Rb + Rb + + e - = Rb -2,925 Rb Активный
K + K + + e - = K -2,925 K Активный
Cs + Cs + + e - = Cs -2,923 Cs Активный
Ca 2+ Ca 2+ + 2e - = Ca -2,866 Ca Активный
Na + Na + + e - = Na -2,714 Na Активный
Mg 2+ Mg 2+ +2 e - = Mg -2,363 Mg Активный
Al 3+ Al 3+ + 3e - = Al -1,662 Al Активный
Ti 2+ Ti 2+ + 2e - = Ti -1,628 Ti Ср. активности
Mn 2+ Mn 2+ + 2e - = Mn -1,180 Mn Ср. активности
Cr 2+ Cr 2+ + 2e - = Cr -0,913 Cr Ср. активности
H 2 O 2H 2 O+ 2e - =H 2 +2OH - -0,826 H 2 , рН=14 Ср. активности
Zn 2+ Zn 2+ + 2e - = Zn -0,763 Zn Ср. активности
Cr 3+ Cr 3+ +3e - = Cr -0,744 Cr Ср. активности
Fe 2+ Fe 2+ + e - = Fe -0,440 Fe Ср. активности
H 2 O 2H 2 O + e - = H 2 +2OH - -0,413 H 2 , рН=7 Ср. активности
Cd 2+ Cd 2+ + 2e - = Cd -0,403 Cd Ср. активности
Co 2+ Co 2+ +2 e - = Co -0,227 Co Ср. активности
Ni 2+ Ni 2+ + 2e - = Ni -0,225 Ni Ср. активности
Sn 2+ Sn 2+ + 2e - = Sn -0,136 Sn Ср. активности
Pb 2+ Pb 2+ + 2e - = Pb -0,126 Pb Ср. активности
Fe 3+ Fe 3+ +3e - = Fe -0,036 Fe Ср. активности
H + 2H + + 2e - =H 2 H 2 , рН=0 Ср. активности
Bi 3+ Bi 3+ + 3e - = Bi 0,215 Bi Малой активн.
Cu 2+ Cu 2+ + 2e - = Cu 0,337 Cu Малой активн.
Cu + Cu + + e - = Cu 0,521 Cu Малой активн.
Hg 2 2+ Hg 2 2+ + 2e - = Hg 0,788 Hg 2 Малой активн.
Ag + Ag + + e - = Ag 0,799 Ag Малой активн.
Hg 2+ Hg 2+ +2e - = Hg 0,854 Hg Малой активн.
Pt 2+ Pt 2+ + 2e - = Pt 1,2 Pt Малой активн.
Au 3+ Au 3+ + 3e - = Au 1,498 Au Малой активн.
Au + Au + + e - = Au 1,691 Au Малой активн.

В данном ряду напряжений приведены также значения электродных потенциалов водородного электрода в кислой (рН=0), нейтральной (рН=7), щелочной (рН=14) средах. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы – восстановителями. Чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы. Чем ближе металл к началу ряда, тем более сильным восстановителем он является.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Следует иметь в виду, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей происходит лишь в случае металлов, расположенных в ряду напряжений после магния.



Все металлы разделяют на три условные группы, что отражено в следующей таблице.

Таблица 3

Условное деление металлов

Взаимодействие с водой. Окислителем в воде является ион водорода. Поэтому окисляться водой могут только те металлы, стандартные электродные потенциалы которых ниже потенциала ионов водорода в воде. Он зависит от рН среды и равен

φ = -0,059рН.

В нейтральной среде (рН=7) φ = -0,41 В. Характер взаимодействия металлов с водой представлен в таблице 4.

Металлы из начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Но уже магний вытесняет водород только из горячей воды. Обычно металлы, расположенные между магнием и свинцом не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, которые обладают защитным действием.

Таблица 4

Взаимодействие металлов с водой в нейтральной среде

Взаимодействие металлов с хлорводородной кислотой.

Окислителем в соляной кислоте является ион водорода. Стандартный электродный потенциал водородного иона равен нулю. Поэтому все активные металлы и металлы средней активности должны реагировать с кислотой. Только для свинца проявляется пассивация.

Таблица 5

Взаимодействие металлов с соляной кислотой

Медь может быть растворена в очень концентрированной соляной кислоте, не смотря на то, что относится к малоактивным металлам.

Взаимодействие металлов с серной кислотой происходит различно и зависит от её концентрации.

Взаимодействие металлов с разбавленной серной кислотой. Взаимодействие с разбавленной серной кислотой осуществляется так же, как и с соляной кислотой.

Таблица 6

Взаимодействие металлов с разбавленной серной кислотой

Разбавленная серная кислота окисляет своим ионом водорода. Она взаимодействует с теми металлами, электродные потенциалы которых ниже, чем у водорода. Свинец не растворяется в серной кислоте при её концентрации ниже 80%, так как образующаяся при взаимодействии свинца с серной кислотой соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Взаимодействие металлов с концентрированной серной кислотой.

В концентрированной серной кислоте в роли окислителя выступает сера в степени окисления +6. Она входит в состав сульфат-иона SO 4 2- . Поэтому концентрированной кислотой окисляются все металлы, стандартный электродный потенциал которых меньше, чем у окислителя. Наибольшее значение электродного потенциала в электродных процессах с участием сульфат-иона в качестве окислителя равно 0,36 В. Вследствие этого с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Для металлов средней активности (Al, Fe) имеет место пассивация из-за образования плотных пленок оксидов. Олово окисляется до четырехвалентного состояния с образованием сульфата олова (IV):

Sn + 4 H 2 SO 4 (конц.) = Sn(SO 4) 2 +2SO 2 + 2H 2 O.

Таблица 7

Взаимодействие металлов с концентрированной серной кислотой

Свинец окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца. В горячей концентрированной серной кислоте растворяется ртуть с образованием сульфатов ртути (I) и ртути (II). В кипящей концентрированной серной кислоте растворяется даже серебро.

Следует иметь в виду, что чем активнее металл, тем глубже степень восстановления серной кислоты. С активными металлами кислота восстанавливается в основном до сероводорода, хотя присутствуют и другие продукты. Например

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ +4H 2 O;

4Zn +5H 2 SO 4 = 4ZnSO 4 = 4ZnSO 4 +H 2 S +4H 2 O.

Взаимодействие металлов с разбавленной азотной кислотой.

В азотной кислоте в качестве окислителя выступает азот в степени окисления +5. Максимальное значение электродного потенциала для нитрат-иона разбавленной кислоты как окислителя равно 0,96 В. Вследствие такого большого значения, азотная кислота более сильный окислитель, чем серная. Это видно из того, что азотная кислота окисляет серебро. Восстанавливается кислота тем глубже, чем активнее металл и чем более разбавлена кислота.

Таблица 8

Взаимодействие металлов с разбавленной азотной кислотой

Взаимодействие металлов с концентрированной азотной кислотой.

Концентрированная азотная кислота обычно восстанавливается до диоксида азота. Взаимодействие концентрированной азотной кислоты с металлами представлено в таблице 9.

При использовании кислоты в недостатке и без перемешивания активные металлы восстанавливают её до азота, а металлы среднеё активности до монооксида углерода.

Таблица 9

Взаимодействие концентрированной азотной кислоты с металлами

Взаимодействие металлов с растворами щелочей.

Щелочами металлы окисляться не могут. Это обусловлено тем, что щелочные металлы являются сильными восстановителями. Поэтому их ионы самые слабые окислители и в водных растворах окислительных свойств не проявляют. Однако в присутствии щелочей окисляющее действие воды проявляется в большей степени, чем в их отсутствие. Благодаря этому, в щелочных растворах металлы окисляются водой с образование гидроксидов и водорода. Если оксид и гидроксид относятся к амфотерным соединениям, то они будут растворяться в щелочном растворе. В результате пассивные в чистой воде металлы энергично взаимодействуют с растворами щелочей.

Таблица 10

Взаимодействие металлов с растворами щелочей

Процесс растворения представляется в виде двух стадий: окисления металла водой и растворения гидроксида:

Zn + 2HOH = Zn(OH) 2 ↓ + H 2 ;

Zn(OH) 2 ↓ + 2NaOH = Na 2 .

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтому металлы являются восстановителями. Металлы взаимодействуют с простыми веществами: Са + С12 - СаС12, Активные металлы реагируют с водой: 2Na + 2Н20 = 2NaOH + H2f. Металлы, стоящие в ряду стандартных электродных потенциалов до водорода, взаимодействуют с разбавленными растворами кислот (кроме HN03) с выделением водорода: Zn + 2НС1 = ZnCl2 + H2f. Металлы реагируют с водными растворами солей менее активных металлов: Ni + CuS04 = NiS04 + Си J. Металлы реагируют с кислотами-окислителями: С. Способы получения металлов Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов различают пирогидро- и электрометаллургию. ГГ) Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (II), водород, метан. Cu20 + С - 2Си + СО, t° Cu20 + СО - 2Cu + С02, t° Сг203 + 2А1 - 2Сг + А1203, (алюмотермия) t° TiCl2 + 2Mg - Ti + 2MgCl2, (магнийтермия) t° W03 + 3H2 = W + 3H20. (водородотермия) |Ц Гидрометаллургия - это получение металлов из растворов их солей. Например, при обработке разбавленной серной кислотой медной руды, содержащей оксид меди (И), медь переходит в раствор в виде сульфата: CuO + H2S04 = CuS04 + Н20. Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа: CuS04 + Fe = FeS04 + Си. [з] Электрометаллургия - это способы получения металлов из их расплавленных оксидов или солей с помощью электролиза: электролиз 2NaCl - 2Na + Cl2. Вопросы и задачи для самостоятельного решения 1. Укажите положение металлов в периодической системе Д. И. Менделеева. 2. Покажите физические и химические свойства металлов. 3. Объясните причину общности свойств металлов. 4. Покажите изменение химической активности металлов главных подгрупп I и II групп периодической системы. 5. Каким образом изменяются металлические свойства у элементов II и III периодов? Назовите самый тугоплавкий и самый легкоплавкий металлы. 7. Укажите, какие металлы встречаются в природе в самородном состоянии и какие - только в виде соединений. Чем это можно объяснить? 8. Какова природа сплавов? Как состав сплава влияет на его свойства. Покажите на конкретных примерах. Укажите важнейшие способы получения металлов из руд. 10l Назовите разновидности пирометаллургии. Какие восстановители используют в каждом конкретном способе? Почему? 11. Назовите металлы, которые получают с помощью гидрометаллургии. В чем сущность и каковы преимущества данного метода перед другими? 12. Приведите примеры получения металлов с помощью электрометаллургии. В каком случае используют этот способ? 13. Каковы современные способы получения металлов высокой степени чистоты? 14. Что такое «электродный потенциал»? Какой из металлов имеет наибольший и какой - наименьший электродные потенциалы в водном растворе? 15. Охарактеризуйте ряд стандартных электродных потенциалов? 16. Можно ли вытеснить металлическое железо из водного раствора его сульфата с помощью металлического цинка, никеля, натрия? Почему? 17. Каков принцип работы гальванических элементов? Какие металлы могут в них использоваться? 18. Какие процессы относятся к коррозионным? Какие виды коррозии вам известны? 19. Что называется электрохимической коррозией? Какие способы защиты от нее вам известны? 20. Как влияет на коррозию железа его контакт с другими металлами? Какой металл будет разрушаться первым на поврежденной поверхности луженого, оцинкованного и никелированного железа? 21. Какой процесс называют электролизом? Напишите реакции, отражающие процессы, происходящие на катоде и аноде при электролизе расплава хлорида натрия, водных растворов хлорида натрия, сульфата меди, сульфата натрия, серной кислоты. 22. Какую роль играет материал электродов при протекании процессов электролиза? Приведите примеры процессов электролиза, протекающих с растворимыми и нерастворимыми электродами. 23. Сплав, идущий на приготовление медных монет, содержит 95 % меди. Определите второй металл, входящий в сплав, если при обработке однокопеечной монеты избытком соляной кислоты выделилось 62,2 мл водорода (н. у.). алюминий. 24. Навеска карбида металла массой 6 г сожжена в кислороде. При этом образовалось 2,24 л оксида углерода (IV) (н. у.). Определите, какой металл входил в состав карбида. 25. Покажите, какие продукты выделятся при электролизе водного раствора сульфата никеля, если процесс протекает: а) с угольными; б) с никелевыми электродами? 26. При электролизе водного раствора медного купороса на аноде выделилось 2,8 л газа (н. у.). Какой это газ? Что и в каком количестве выделилось на катоде? 27. Составьте схему электролиза водного раствора нитрата калия, протекающего на электродах. Чему равно количество пропущенного электричества, если на аноде выделилось 280 мл газа (н. у.)? Что и в каком количестве выделилось на катоде?

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С НЕМЕТАЛЛАМИ

Неметаллы проявляют окислительные свойства в реакциях с металлами, принимая от них электроны и восстанавливаясь.

Взаимодействие с галогенами

Галогены (F 2 , Cl 2 , Br 2 , I 2 ) являются сильными окислителями, поэтому с ними взаимодействуют все металлы при обычных условиях:

2 Me + n Hal 2 → 2 MeHal n

Продуктом такой реакции является соль – галогенид металла (MeF n -фторид, MeCl n -хлорид, MeBr n -бромид, MeI n -иодид). При взаимодействии с металлом галоген восстанавливается до низшей степени окисления (-1), а n равно степени окисления металла.

Скорость реакции зависит от химической активности металла и галогена. Окислительная активность галогенов снижается по группе сверху вниз (от F к I ).

Взаимодействие с кислородом

Кислородом окисляются почти все металлы (кроме Ag , Au , Pt ), при этом происходит образование оксидов Me 2 O n .

Активные металлы легко при обычных условиях взаимодействуют с кислородом воздуха.

2 Mg + O 2 → 2 MgO (со вспышкой)

Металлы средней активности также реагируют с кислородом при обычной температуре. Но скорость такой реакции существенно ниже, чем при участии активных металлов.

Малоактивные металлы окисляются кислородом при нагревании (горение в кислороде).

Оксиды металлов по химическим свойствам можно разделить на три группы:

1. Осно́вные оксиды (Na 2 O , CaO , Fe II O , Mn II O , Cu I O и др.) образованы металлами в низких степенях окисления (+1, +2, как правило, ниже +4). Основные оксиды взаимодействуют с кислотными оксидами и кислотами с образованием солей:

CaO + CO 2 → CaCO 3

CuO + H 2 SO 4 → CuSO 4 + H 2 O

2. Кислотные оксиды (Cr VI O 3 , Fe VI O 3 , Mn VI O 3 , Mn 2 VII O 7 и др.) образованы металлами в высоких степенях окисления (как правило, выше +4). Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей:

FeO 3 + K 2 O → K 2 FeO 4

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

3. Амфотерные оксиды (BeO , Al 2 O 3 , ZnO , SnO , MnO 2 , Cr 2 O 3 , PbO , PbO 2 и др.) имеют двойственную природу и могут взаимодействовать как с кислотами, так и с основаниями:

Cr 2 O 3 + 3H 2 SO 4 → Cr 2 (SO 4) + 3H 2 O

Cr 2 O 3 + 6NaOH → 2Na 3

Взаимодействие с серой

С серой взаимодействуют все металлы (кроме Au ), образуя соли – сульфиды Me 2 S n . При этом сера восстанавливается до степени окисления «-2». Платина (Pt ) взаимодействует с серой только в мелкораздробленном состоянии. Щелочные металлы, а также Ca и Mg реагируют с серой при нагревании со взрывом. Zn , Al (в порошке) и Mg в реакции с серой дают вспышку. В направлении слева направо в ряду активности скорость взаимодействия металлов с серой убывает.

Взаимодействие с водородом

С водородом некоторые активные металлы образуют соединения – гидриды:

2 Na + H 2 → 2 NaH

В этих соединениях водород находится в редкой для него степени окисления «-1».

Е.А. Нуднoва, М.В. Андрюxова