Что называют абсолютной погрешностью. Относительная погрешность приближенного числа

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.

Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

По форме представления погрешности делятся на абсолютную , относительную и приведенную погрешности.

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.


Нормирующее значение Хn зависит от типа шкалы датчика КИП:

  1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
  2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
  3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

При присвоении прибору класса точности он выбирается из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n); 2·10 n ; 2,5·10 n ; (3·10 n); 4·10 n ; 5·10 n ; 6·10 n ; (где n =1, 0, -1, -2, и т. д.). Значения классов точности, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.
Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.
Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт
где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.
Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.
Iш.вых.макс - максимальный выходной ток датчика, мА. Для датчика с выходом 0…20 или 4…20 мА Iш.вых.макс = 20 мА, для датчика с выходом 0…5 мА Iш.вых.макс = 5 мА.
Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.
Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.
Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.
Подставив известные значения получим:
Iвых.т = 4 + ((20-4)/(250-0))*125 = 12 мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.
ΔIвых.т =12 ± (12*5%)/100% = (12 ± 0,6) мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.
Основная относительная погрешность измерения нашего датчика равна:
δ = ((12,62 – 12,00)/12,00)*100% = 5,17%

Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту () так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

Для закрепления и проверки полученных знаний рекомендую выполнить .

На практике обычно числа, над которыми производятся вычисления, являются приближенными значениями тех или иных величин. Для краткости речи приближенное значение величины называют приближенным числом. Истинное значение величины называют точным числом. Приближенное число имеет практическую ценность лишь тогда, когда мы можем определить, с какой степенью точности оно дано, т.е. оценить его погрешность. Напомним основные понятия из общего курса математики.

Обозначим: x - точное число (истинное значение величины), а -приближенное число (приближенное значение величины).

Определение 1 . Погрешностью (или истинной погрешностью) приближенного числа называется разность между числом x и его приближенным значением а . Погрешность приближенного числа а будем обозначать . Итак,

Точное число x чаще всего бывает неизвестно, поэтому найти истинную и абсолютную погрешности не представляет возможным. С другой стороны, бывает необходимо оценить абсолютную погрешность, т.е. указать число, которого не может превысить абсолютная погрешность. Например, измеряя длину предмета данным инструментом, мы должны быть уверены в том, что погрешность полученного числового значения не превысит некоторого числа, например 0,1 мм. Другими словами, мы должны знать границу абсолютной погрешности. Эту границу будем называть предельной абсолютной погрешностью.

Определение 3 . Предельной абсолютной погрешностью приближенного числа а называется положительное число такое, что , т.е.

Значит, х по недостатку, - по избытку. Применяют также такую запись:

. (2.5)

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее число тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи (с 1-2 значащими цифрами) число , удовлетворяющее неравенству (2.3).



Пример. Определить истинную, абсолютную и предельную абсолютную погрешности числа а = 0,17, взятого в качестве приближенного значения числа .

Истинная погрешность:

Абсолютная погрешность:

За предельную абсолютную погрешность можно принять число и любое большее число. В десятичной записи будем иметь: Заменяя это число большим и возможно более простым по записи, примем:

Замечание . Если а есть приближенное значение числа х , причем предельная абсолютная погрешность равна h , то говорят, что а есть приближенное значение числа х с точностью до h.

Знания абсолютной погрешности недостаточно для характеристики качества измерения или вычисления. Пусть, например, получены такие результаты при измерении длины. Расстояние между двумя городами S 1 =500 1 км и расстояние между двумя зданиями в городе S 2 =10 1 км. Хотя абсолютные погрешности обоих результатов одинаковы, однако существенное значение имеет то, что в первом случае абсолютная погрешность в 1 км приходится на 500 км, во втором - на 10 км. Качество измерения в первом случае лучше, чем во втором. Качество результата измерения или вычисления характеризуется относительной погрешностью.

Определение 4. Относительной погрешностью приближенного значения а числа х называется отношение абсолютной погрешности числа а к абсолютному значению числа х :

Определение 5. Предельной относительной погрешностью приближенного числа а называется положительное число такое, что .

Так как , то из формулы (2.7) следует, что можно вычислить по формуле

. (2.8)

Для краткости речи в тех случаях, когда это не вызывает недоразумений, вместо “предельная относительная погрешность” говорят просто “относительная погрешность”.

Предельную относительную погрешность часто выражают в процентах.

Пример 1 . . Полагая , можем принять = . Производя деление и округляя (обязательно в сторону увеличения), получим =0,0008=0,08%.

Пример 2. При взвешивании тела получен результат: p=23,4 0,2 г. Имеем =0,2. . Производя деление и округляя, получим =0,9%.

Формула (2.8) определяет зависимость между абсолютной и относительной погрешностями. Из формулы (2.8) следует:

. (2.9)

Пользуясь формулами (2.8) и (2.9), мы можем, если известно число а , по данной абсолютной погрешности находить относительную погрешность и наоборот.

Заметим, что формулы (2.8) и (2.9) часто приходится применять и тогда, когда мы еще не знаем приближенного числа а с требуемой точностью, а знаем грубое приближенное значение а . Например, требуется измерить длину предмета с относительной погрешностью не выше 0,1%. Спрашивается: возможно ли измерить длину с нужной точностью при помощи штангенциркуля, позволяющего измерить длину с абсолютной погрешностью до 0,1 мм? Пусть мы еще не измеряли предмет точным инструментом, но знаем, что грубое приближенное значение длины - около 12 см. По формуле (1.9) находим абсолютную погрешность:

Отсюда видно, что при помощи штангенциркуля возможно выполнить измерение с требуемой точностью.

В процессе вычислительной работы часто приходится переходить от абсолютной погрешности к относительной, и наоборот, что делается с помощью формул (1.8) и (1.9).

1. Как определять погрешности измерений.

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.

Измерение - нахождение значения физической величины опытным путем с помощью средств измерений.

Прямое измерение - определение значения физической величины непосредственно средствами измерения.

Косвенное измерение - определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Введем следующие обозначения:

А, В, С, ... - физические величины.

А пр - приближенное значение физической величины, т. е. значение, полученное путем прямых или косвенных измерений.

ΔА - абсолютная погрешность измерения физической величины.

ε - относительная погрешность измерения физической величины, равная:

Δ И А - абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; см. табл. 1).

Δ 0 А - абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения); она равна в большинстве случаев половине цены деления, при измерении времени - цене деления секундомера или часов.

Таблица 1

Абсолютные инструментальные погрешности средств измерений

Средства измерения Предел измерения Цена деления Абсолютная инструментальная погрешность
1 Линейка
ученическая до 50 см 1 мм ± 1 мм
чертежная до 50 см 1 мм ± 0,2 мм
инструментальная (стальная) 20 см 1 мм ± 0,1 мм
демонстрационная 100 см 1 см ± 0,5 см
2 Лента измерительная 150 см 0,5 см ± 0,5 см
3 Измерительный цилиндр до 250 мл 1 мл ± 1 мл
4 Штангенциркуль 150 мм 0,1 мм ± 0,05 мм
5 Микрометр 25 мм 0,01 мм ± 0,005 мм
6 Динамометр учебный 4 Н 0,1 Н ± 0,05 Н
7 Весы учебные 200 г - ± 0,01 г
8 Секундомер 0-30 мин 0,2 с ± 1 с за 30 мин
9 Барометр-анероид 720-780 мм рт. ст. 1 мм рт. ст. ± 3 мм рт. ст.
10 Термометр лабораторный 0-100 0 С 1 0 С ± 1 0 С
11 Амперметр школьный 2 А 0,1 А ± 0,05 А
12 Вольтметр школьный 6 В 0,2 В ± 0,15 В

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔА = 0,17 ≈ 0,2); числовое значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А = 10,332 ≈ 10,3).

Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, обычно отличаются друг от друга. В этом случае А пр находят как среднее арифметическое значение всех измерений, а погрешность ΔА (ее называют случайной погрешностью) определяют методами математической статистики.

В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. Для получения результата достаточно одного измерения.

Относительная погрешность косвенных измерений определяется так, как показано в таблице 2.

Таблица 2

Формулы для вычисления относительной погрешности косвенных измерений

Формула для физической величины Формула для относительной погрешности
1
2
3
4

Абсолютная погрешность косвенных измерений определяется по формуле ΔА = А пр ε (ε выражается десятичной дробью).

2. О классе точности электроизмерительных приборов.

Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γ пр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность Δ и А от всей шкалы прибора (A max):

Класс точности указывают на шкале прибора или в его паспорте (знак % при этом не пишут). Существуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γ пр) и всю его шкалу (А mах), определяют абсолютную погрешность Δ и А измерения физической величины А этим прибором:

3. Как сравнивать результаты измерений.

1. Записать результаты измерений в виде двойных неравенств:

А 1np - ΔА 1 < А 1пр < А 1пр + ΔА 1 ,

А 2пр - ΔА 2 < А 2пр < А 2пр + ΔА 2 .

2. Сравнить полученные интервалы значений: если интервалы не перекрываются, то результаты неодинаковы; если перекрываются - одинаковы при данной относительной погрешности измерений.

4. Как оформлять отчет о проделанной работе.

  1. Лабораторная работа № ... .
  2. Наименование работы.
  3. Цель работы.
  4. Чертеж (если требуется).
  5. Формулы искомых величин и их погрешностей.
  6. Таблица результатов измерений и вычислений.
  7. Окончательный результат, вывод и пр. (согласно цели работы).

5. Как записывать результат измерения.

А = А пр ± ΔА
е = ...%.

При любых измерениях, округлении результатов расчетов, выполнении достаточно сложных подсчетов неизбежно возникает то или иное отклонение. Для оценки такой неточности принято использовать два показателя - это абсолютная и относительная погрешность.

Если от точного значения числа вычесть полученный результат, то мы получим абсолютное отклонение (причем при подсчете от отнимают меньшее). Например, если округлить 1370 до 1400, то абсолютная погрешность будет равна 1400-1382 = 18. При округлении до 1380, абсолютное отклонение составит 1382-1380 = 2. Формула абсолютной погрешности имеет вид:

Δx = |x* - x|, здесь

x* - истинное значение,

x - приближенная величина.

Впрочем, для характеристики точности одного этого показателя явно недостаточно. Судите сами, если погрешность веса составляет 0,2 грамма, то при взвешивании химреактивов для микросинтеза это будет очень много, при взвешивании 200 грамм колбасы вполне нормально, а при измерении веса железнодорожного вагона она и вовсе может быть не замечена. Поэтому часто вместе с абсолютной указывается или рассчитывается также относительная погрешность. Формула данного показателя выглядит так:

Рассмотрим пример. Пусть общее число учеников школы равно 196. Округлим эту величину до 200.

Абсолютное отклонение составит 200 - 196 = 4. Относительная погрешность составит 4/196 или округленно, 4/196 = 2%.

Таким образом, если известно истинное значение некой величины, то относительной погрешностью принятого приближенного значения является отношение абсолютного отклонения приближенной величины к точному значению. Однако в большинстве случает выявить истинное точное значение очень проблематично, а порой и вовсе невозможно. И, следовательно, нельзя рассчитать точное Тем не менее, всегда можно определить некоторое число, которое всегда будет немного больше, чем максимальная абсолютная или относительная погрешность.

Например, продавец взвешивает дыню на чашечных весах. При этом самая маленькая гиря равна 50 граммам. Весы показали 2000 грамм. Это приблизительное значение. Точный вес дыни неизвестен. Однако мы знаем, что не может быть больше 50 грамм. Тогда относительная веса не превосходит 50/2000 = 2,5%.

Значение, которое изначально больше абсолютной погрешности либо в наихудшем случае ей равное, принято называть предельной абсолютной погрешностью или же границей абсолютной погрешности. В предыдущем примере этот показатель равен 50 граммам. Аналогичным образом определяется и предельная относительная погрешность, которая в рассмотренном выше примере составила 2,5%.

Значение предельной погрешности не является строго заданным. Так, вместо 50 грамм мы вполне могли бы взять любое число, большее чем вес наименьшей гири, скажем 100 г или 150 г. Однако на практике выбирается минимальное значение. А если его удается точно определить, то оно и будет одновременно служить предельной погрешностью.

Бывает так, что абсолютная предельная погрешность не указана. Тогда следует считать, что она равна половине единицы последнего указанного разряда (если это число) или минимальной единице деления (если инструмент). К примеру, для миллиметровой линейки этот параметр равен 0,5 мм, а для приближенного числа 3,65 абсолютное предельное отклонение равно 0,005.